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Electro-conductive biomaterials serve as a vital bridge between bioelectronics and regenerative
medicine by merging electrical functionality with biocompatible structures. These materials facilitate
essential cellular behaviors such as communication, migration, proliferation, and differentiation
processes that are crucial for the repair and regeneration of neural, cardiac, musculoskeletal, and
dermal tissues. Recent advancement of conductive polymers, nanomaterials, and hydrogels has

. . . . i Keywords:
facilitated the creation of smart scaffolds and implantable devices that can facilitate cellular Bioymaterials
organization and provide electrical cues to facilitate tissue growth. The inclusion of Electro-conductive

Bioelectronics

electroconductive materials with electrical stimulation promote regeneration and open pathways to ! )
. . . . . . . . Tissue regeneratlon
functional tissue fabrication and bioelectronic interfaces. In this study, we conducted a systematic

review of electroconductive biomaterials including classification, conductivity mechanisms,
biocompatibility, and biodegradation. We also explored applications across a variety of tissue
engineering areas of study, recent developments in fabrication techniques, and the technical and
clinical challenges that will need to be solved. In the end, we elucidated the potential of these
materials to pave the way for the future of regenerative medicine and bioelectronic integration.
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1. Introduction significant gap that direct tissue engineering approaches overlook [4].
Incorporating electro-conductive biomaterials with bio-electronic devices
makes it possible to recover electrical communication in tissues and also

allows for real-time assessment and alteration of tissue behaviors and

Electro-conductive biomaterials have emerged as a revolutionary
transition in tissue engineering and regenerative medicine, creating

opportunity for the integration of bioelectronics and tissue regeneration [1, 2].
Electro-conductive biomaterials are engineered to replicate the electrical
properties of natural tissues, which play an essential role in function
restoration of electroactive tissues like cardiac, nerve, and muscle tissues [3].
Functional electrical conductivity within biomimetic scaffolds improves cell-
cell communication, cellular proliferation, and cell differentiation, bridging a
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functions [5-7]. In tissue engineering research targeting cardiac and neural
tissues, this combination of bio-electronic technologies is particularly useful
because electrical stimulation can initiate a molecular cascade that facilitates
regeneration and recovery [7, 8].

Developments in conductive polymers, metal nanoparticles, and
nanocomposites have enabled the development of scaffolds that are
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biocompatible, biodegradable and able to deliver electrical signals tailored to

the needs of specific tissues [5, 6, 9].

Electro-conductive biomaterials are remarkable in their ability to connect
implanted cells with host tissues or across damaged areas to reproduce

move within the material. Generally, they can be classified or categorized
based on their electrical conductivity as well as the conductivity type of the
electrons or charged particles. Various types of electro-conductive materials
are shown in Table 1 and Fig. 1.

disrupted electrical signals. This type of bridging is inherently useful for

potential clinical applications aimed at addressing the unique problems caused

2.2. Mechanisms of Electrical Conductivity

by tissue injury and disease, where normal electrical communication may be

absent [6, 7]. Moreover, these materials can be designed to deliver biological
molecules, such as antibodies and enzymes, and allow for enhanced
regenerative effects and multi-functional therapeutic uses [6, 10]. Notably,
there has been encouraging progress thus far, but much is still yet to be
completely understood regarding the role of electrical stimuli in engineered
tissues and how they interact with cellular behavior. For example, the precise
nature of how these conductive scaffolds affect cell signaling, metabolism,
and gene expression remains largely to be determined, and long-term in vivo

studies will be required to address safety and effectiveness [11].

Furthermore, the advancement of production methods which will permit
precise assessments and control over their electrical, mechanical, and
biochemical properties is essential [11, 12]. Overall, this review will provide
an overview of electro-conductive biomaterials, their functions and how they
can be used to connect bioelectronics with tissue regeneration. The review will
also discuss current issues and future research opportunities based on how
these advanced materials can be optimized for the repair of functional and
durable tissue, and subsequently facilitate connections between bio-electronic

interfaces to regenerative medicine.

2. Fundamentals of Electro-conductive Biomaterials

Electro-conductive biomaterials are materials engineered to sustain

Electrical conductivity in biomaterials results from various mechanisms
that enable the transfer of electrical charge, which is vital for applications like
tissue engineering and bio-electronic devices [28]. A primary method involves
incorporating intrinsically conductive polymers, which have m-conjugated
systems that allow m-electrons to move freely along the polymer chain. This
electron delocalization creates pathways for charge carriers, providing
electrical conduction similar to
biocompatibility and biodegradability [7].

Another method to achieve conductivity is by creating composites that
disperse conductive fillers such as metals, carbon nanotubes, or conductive

synthetic metals while maintaining

ceramics within nonconductive polymer matrices [29]. This approach
balances electrical performance with mechanical strength, as the filler-based
conductive network allows charge flow, while the polymer matrix provides
structural support and biocompatibility [30]. Furthermore, conductive
biomaterials can harness bioelectric phenomena, such as endogenous
electrical signals created by transmembrane potentials in cells [31, 32]. The
interaction between cells and conductive surfaces can influence cell adhesion,
growth, and differentiation by controlling ionic currents and interactions with
the extracellular matrix [32, 33].

2.3. Biocompatibility and Degradation

biocompatibility while simultaneously possessing electrical conductivity

allowing them to effectively engage with biological cells and tissues [13]. This
multidisciplinary area brings together biology, materials science, and
electronics to further fields such as tissue engineering, bioelectronics and

regenerative medicine [14].

2.1. Bypes of Electro-conductive Materials

Electro-conductive material is a substance that allows electrical current to
flow as a result of free electrons or charged particles that can be present and

Metallic-based CBMs

Metal nanoparticles

Carbon-based CBMs

Electro-conductive biomaterials are a promising area in regenerative
medicine, where biocompatibility depends on surface properties, electrical
stimulation, and immune responses. Their degradation occurs through
chemical, physical, and biological processes that must be carefully controlled
to maintain functionality while ensuring safe resorption [34, 35]. Innovations
like bio-erodible PEDOT derivatives show potential in creating electro-
conductive biomaterials that are both biocompatible and degradable, opening
new possibilities for temporary implants such as cardiac tissue scaffolds and
bioelectronics [9, 34].

Conductive polymers

M. 1O,

A A
= Polypyrrole  Polyaniline
' Fullerene CNTs o/_\o
]\
n
Graphene PEDOT

Fig. 1. Some of different Types of Electro-conductive Materials [15].

Table 1. Properties of different Types of Electro-conductive Materials

Type Description Properties Examples References
Metallic Conductors Conduct electricity via free clcc!mns moving through High clcctfical condu_ctivi.t}f, good mcchanic@l strength, Silver, Copper, Gold, Aluminum, [16,17]
the metal lattice widely used in wiring and electronics. Iron, Steel, Bronze
Nonmetallic Materials that are not metals but can conduct Moderate conductivity; used in electrodes, flexible Graphite. conductive polymers [18-20]
Conductors electricity due to special structures or additives. electronics, and composites. phite, poly
Electrolytic Conduct electricity through ion movement in a Electrical conduction by ion displacement, used in .
. . S . ) Saltwater, acids, bases [21-23]
Conductors chemical reaction, often in liquid or gel form batteries and electrochemical cells
. Materials with conductivity between conductors and Used in electronic devices; conductivity controlled by . .
Semiconductors R R .7 . . L Silicon, Germanium [24, 25]
insulators; conductivity can be modified doping and external conditions
Superconductors Materials that conduct electricity with zero resistance Perfect conductivity at low temperatures; used in MRI Niobium-tin, YBCO (ceramics) 126, 27]

below a critical temperature

machines, particle accelerators
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3. Applications in Tissue Regeneration

Electro-conductive biomaterials have emerged as a revolutionary class of
materials in tissue regeneration because they can mimic the electrical
properties of natural tissues and influence cell behaviors vital for healing.
They are utilized across various tissue types, including cardiac, neural, bone,
cartilage, muscle, and skin regeneration.

3.1. Neural Tissue Engineering

Using electro-conductive biomaterials in neural tissue engineering
represents a significant advancement in regenerative medicine, particularly for
repairing damaged central and peripheral nervous system tissues.

These materials establish a vital interface that replicates the natural
electrical environment of neural tissues, enabling electrical stimulation (ES)
to encourage neural stem/progenitor cell (NS/PC) differentiation into
functional neuronal networks. By utilizing electrical signals within
biomaterial scaffolds, the physiological microenvironment of the central
nervous system (CNS) can be more accurately simulated, which is of utmost
importance in supporting neural differentiation, growth, and network
formation [9].

Conductive biomaterials, including electro-conductive polymers (ECPs)
and nano-biomaterials, have various advantages such as biocompatibility,
biodegradability, and the ability to deliver exogenous electrical signals to
promote nerve regeneration. In the case of peripheral nerve repair, these
materials are incorporated into nerve guidance conduits (NGCs); which amply
provide a physical structure and modify the bioelectrical microenvironment to
facilitate nerve growth and support more complete functional recovery [36].

Electrical stimulation from conductive scaffolds triggers molecular
pathways supporting axonal regeneration and remyelination leading to better
motor and sensory outcomes [36, 37].

Recent progress includes developing 3D conductive hydrogel systems and
printed conductive polymer microelectrode arrays, enabling 3D electrical
stimulation of neural tissues derived from human neural stem cells. These
platforms promote extensive neuron maturation and the formation of
functional neural networks, showing promise for creating clinically relevant
neural tissue constructs for research and therapy [9, 38]. Additionally, these
biomaterials are useful for modeling neural development, disease, and drug
screening [38].

3.2. Cardiac Tissue Repair

Tissue engineering has appeared as a promising frontier in regenerative
medicine, aiming to restore, maintain, or improve tissue functions [39].
Electroconductive biomaterials, including conductive nanomaterials such as
gold nanoparticles, carbon-based nanomaterials such as carbon nanotubes,
graphene oxide, silicon-derived nanomaterials, and electroconductive
polymers like polyaniline and polypyrrole, have been integrated into cardiac
patches and injectable hydrogels. These materials enable the transmission of
electrical signals essential for synchronized cardiac muscle contraction, which
is often impaired after MI due to tissue damage and fibrosis [34, 40].
Enhancing cell-to-cell communication between cardiomyocytes, promoting
tissue maturation, and improving contractile function are all facilitated by
their ability to restore electrical connectivity [34].

There are two primary methods for using EC biomaterials in cardiac repair.
The first involves designing patches or scaffolds in the lab with EC properties
that are then implanted onto the affected heart tissue for mechanical support
and electrical connection with adjacent tissue. The second primarily uses
injectable EC hydrogels for delivery into the myocardium under fewer
invasive conditions [40, 41]. Injectable hydrogels would not only help restore
electrical coupling, but also allow for the delivery of therapeutic agents, genes,
and growth factors to induce new blood vessel formation and tissue
regeneration [40]. Injectable EC hydrogels were used in cardiac tissue
engineering (Fig. 2) with the goal of restoring electrical function and/ or
delivering therapeutic agents. These biomaterials' unique electrical properties
help minimize adverse remodeling, such as myocardial cell death and fibrosis,

which lead to increased tissue stiffness and electrical resistance after an
infarction.

By improving the mechanical softness and electrical conductivity of
damaged cardiac tissue, electro-conductive biomaterials support better
electromechanical coupling and synchronized heartbeats, resulting in
enhanced heart function [42, 43].
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Fig. 2. Injectable conductive hydrogels for cardiac tissue engineering, facilitating
electrical coupling and delivery of therapeutic agents.

3.3. Bone and Musculoskeletal Regeneration

Electro-conductive biomaterials have become very promising for bone and
musculoskeletal —regeneration because they mimic the natural
electrophysiological environment of bone tissue. Since bone is an
electroactive and electro-responsive tissue, regenerative efforts are
significantly improved by implanting materials that conduct electrons, which
facilitates electron transfer at the cell-material interface [44, 45]. This transfer
enhances cell-substrate interactions, supports intercellular communication,
and promotes osteogenesis of adult stem cells and osteoprogenitors even
without external electrical stimulation [44].

Yu et al.'s [46] recent research highlighted progress in nano-conductive
hydrogels made from materials like calcium phosphate, PEDOT:PSS,
magnesium titanate, and methacrylated alginate. These hydrogels
demonstrated strong electro-activity, biocompatibility, and osteoinductivity,
promoting calcium influx locally and activating signaling pathways such as
TGF-p/Smad2, which are essential for bone formation. In vivo experiments
showed that when combined with electrical stimulation, these hydrogels could
fully repair bone defects within weeks, underscoring their potential for clinical
use in electro-inspired bone regeneration. Additionally, -electroactive
biomaterials support osteogenesis while also promoting chondrogenesis,
angiogenesis, antibacterial activity, and drug delivery, serving as
multifunctional platforms for musculoskeletal tissue engineering [47, 48]. By
integrating electrical, biochemical, and mechanical cues, these biomaterials
offer a biomimetic approach to effectively restore bone and cartilage functions
[49].

3.4. Wound Healing

Conductive biomaterials play multiple roles in wound healing. They act as
bioactive dressings that not only serve as physical barrthe wound healing
processiers but also promote cell attachment, growth, and movement [50, 51].
For instance, PPy-based conductive films integrated into polymer matrices
have been shown to support the viability and growth of human skin fibroblasts
by Yu et al. [52], especially when combined with electrical stimulation. This
method influences the expression of cytokines like IL-6 and IL-8, as well as
growth factors such as FGF-1 and FGF-2, which are essential for forming
granulation tissue and collagen production. Consequently, this approach
enhances the healing process beyond what traditional dressings can achieve.

Wang et al [S3]. suggested that conductive biomaterials can be designed
to incorporate functions like electronically controlled drug release,
antibacterial effects through agents like silver nanowires, and photo-thermal
properties. These features improve the healing environment. Such
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multifunctional electro-conductive biomaterials are flexible and can be used
for various wounds, including chronic and diabetic ulcers, which are typically
difficult to treat.

4. Challenges and Future Perspective

Electro-conductive biomaterials offer significant potential for tissue
engineering and regenerative medicine by delivering electrical stimuli directly
to cells, thereby boosting functions such as growth, migration, adhesion,
proliferation, and differentiation. These materials, like conducting polymers
including polyaniline, PEDOT, and poly-pyrrole, combine the mechanical
strengths of polymers with the electrical properties of metals, enabling
adjustable conductivity and biocompatibility tailored to various tissues [7, 54].
However, challenges remain in their practical application, especially
regarding their stability and biodegradability within the body. Conducting
polymers tend to degrade slowly, which can cause inflammation and require
surgical removal, prompting research into biodegradable alternatives.
Additionally, successful integration of these materials into complex tissue
environments demands precise control over surface properties and
conductivity to support cell behavior and tissue regeneration. The
development of electro-conductive hydrogels also faces hurdles such as
mismatched mechanical properties with native tissues, environmental
durability, susceptibility to damage, interface compatibility, and bacterial
contamination all issues that must be addressed to unlock their full potential
in bioelectronics and tissue engineering [54, 55].

Looking ahead, the development of electro-conductive biomaterials
depends on overcoming current challenges by adopting innovative fabrication
techniques like 3D bio-printing [56]. This technology allows for the creation
of precisely structured, cell-loaded constructs with adjustable electrical
properties that better resemble native tissues. Research in material design
focuses on balancing conductivity with mechanical flexibility, while also
improving biodegradability and biocompatibility to avoid immune reactions
[6, 57]. Combining electrical stimulation with conductive scaffolds has
produced synergistic effects, especially in cardiac and neural tissue
engineering, emphasizing the importance of integrating these methods.
Additionally, bringing these materials into clinical practice will require
solving issues such as long-term stability, monomer toxicity, and proper
integration with host tissues. Ongoing interdisciplinary efforts are crucial for
developing "smart" electro-conductive biomaterials that can adapt to
physiological needs, support tissue growth, and effectively communicate with
bio-electronic devices, creating new opportunities for treating various diseases
and injuries [56, 57].

5. Conclusion

Electro-conductive biomaterials have become an essential innovation in
tissue engineering, bridging bioelectronics and regenerative medicine by
mimicking the electrical properties of natural extracellular matrices. These
materials support vital cellular activities such as growth, migration,
proliferation, and differentiation across various tissues like cardiovascular,
neural, bone, and muscle. Using conductive scaffolds with electrical
stimulation offers combined benefits, enhancing functional recovery in nerve
repair and the maturation of cardiac tissue.

Although there have been promising results, challenges remain in
understanding long-term biocompatibility, cell-material interactions, and
scalable manufacturing processes. Future research should focus on developing
intelligent scaffold designs that incorporate structural, mechanical, and
dynamic electrical signals, along with thorough clinical translation efforts.
The ongoing development of electroconductive biomaterials has the potential
to significantly enhance the restoration of complex tissue functions.
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