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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Electro-conductive biomaterials serve as a vital bridge between bioelectronics and regenerative 
medicine by merging electrical functionality with biocompatible structures. These materials facilitate 
essential cellular behaviors such as communication, migration, proliferation, and differentiation 
processes that are crucial for the repair and regeneration of neural, cardiac, musculoskeletal, and 
dermal tissues. Recent progress in conductive polymers, nanomaterials, and hydrogels has led to the 
development of smart scaffolds and implantable devices that guide cell organization and deliver 
electrical cues to support tissue growth. By combining electroconductive materials with electrical 
stimulation, these systems enhance regeneration and open new pathways for building functional 
tissues and bioelectronic interfaces. This study provides a comprehensive review of electro-
conductive biomaterials, including their classifications, mechanisms of conductivity, 
biocompatibility, and biodegradation. It further explores their applications across various tissue 
engineering domains, recent innovations in fabrication methods, and the technical and clinical 
challenges that must be addressed. Ultimately, this work outlines the potential of these materials to 
transform the future of regenerative medicine and bioelectronic integration. 
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1. Introduction 

Electro-conductive biomaterials have become a groundbreaking area in 
tissue engineering and regenerative medicine, opening new possibilities for 
linking bioelectronics with tissue repair [1, 2]. These materials are designed 
to mimic the electrical properties of natural tissues, which are crucial for 
restoring the function of electroactive tissues like heart, nerve, and muscle [3]. 
Adding electrical conductivity to biomimetic scaffolds enhances cellular 
communication, growth, and differentiation, addressing a key gap often seen 

in traditional tissue engineering approaches [4]. Combining electro-
conductive biomaterials with bio-electronic devices enables the restoration of 
electrical communication in tissues while allowing for real-time monitoring 
and modulation of tissue functions [5-7]. This synergy is especially useful in 
cardiac and neural tissue engineering, where electrical stimulation can trigger 
molecular cascades that promote regeneration and recovery [7, 8].  

Advances in conductive polymers, metal nanoparticles, and 
nanocomposites have resulted in the creation of scaffolds that are 
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biocompatible, biodegradable, and capable of delivering electrical signals 
tailored to the specific needs of different tissues [5, 6, 9].  

Electro-conductive biomaterials provide a significant benefit by 
connecting implanted cells with host tissues or across damaged areas, thereby 
restoring disrupted electrical signals. This bridging ability is essential for 
addressing issues caused by tissue injury and disease, where normal electrical 
communication is impaired [6, 7].  

Additionally, these materials can be engineered to deliver biological 
molecules like antibodies and enzymes, enhancing their regenerative 
capabilities and enabling multifunctional therapeutic applications [6, 10]. 
Although significant progress has been made, challenges remain in fully 
understanding and optimizing how electrical stimuli interact with cellular 
behavior in engineered tissues. The specific ways in which conductive 
scaffolds influence cell signaling, metabolism, and gene expression are still 
under investigation, and long-term in vivo studies are needed to confirm their 
safety and effectiveness [11].  

Additionally, developing fabrication methods that allow precise control 
over electrical, mechanical, and biochemical properties is crucial for 
advancing clinical applications [11, 12]. This review offers a comprehensive 
overview of electro-conductive biomaterials, their functional mechanisms, 
and applications in linking bioelectronics with tissue regeneration. It covers 
current challenges and future research directions, highlighting how these 
advanced materials can be improved for effective, durable tissue repair. The 
aim is to enhance the integration of bio-electronic interfaces with regenerative 
medicine. 

2. Fundamentals of Electro-conductive Biomaterials 

Electro-conductive biomaterials are materials designed to combine 
biocompatibility with electrical conductivity. This enables them to interact 
effectively with biological tissues and cells [13]. They represent a 
multidisciplinary combination of biology, materials science, and electronics, 
playing a crucial role in fields like tissue engineering, bioelectronics, and 
regenerative medicine [14]. 

2.1. Types of Electro-conductive Materials 

Electro-conductive materials are substances that allow electric current to 

flow due to the presence and movement of free electrons or charged particles. 
They are typically classified based on their electrical conductivity and the type 
of charge carriers. Various types of electro-conductive materials are shown in 
Table 1 and Fig. 1. 

2.2.  Mechanisms of Electrical Conductivity 

Electrical conductivity in biomaterials results from various mechanisms 
that enable the transfer of electrical charge, which is vital for applications like 
tissue engineering and bio-electronic devices [28]. A primary method involves 
incorporating intrinsically conductive polymers, which have π-conjugated 
systems that allow π-electrons to move freely along the polymer chain. This 
electron delocalization creates pathways for charge carriers, providing 
electrical conduction similar to synthetic metals while maintaining 
biocompatibility and biodegradability [7].  

Another method to achieve conductivity is by creating composites that 
disperse conductive fillers such as metals, carbon nanotubes, or conductive 
ceramics within nonconductive polymer matrices [29]. This approach 
balances electrical performance with mechanical strength, as the filler-based 
conductive network allows charge flow, while the polymer matrix provides 
structural support and biocompatibility [30]. Furthermore, conductive 
biomaterials can harness bioelectric phenomena, such as endogenous 
electrical signals created by transmembrane potentials in cells [31, 32]. The 
interaction between cells and conductive surfaces can influence cell adhesion, 
growth, and differentiation by controlling ionic currents and interactions with 
the extracellular matrix [32, 33].  

2.3. Biocompatibility and Degradation 

Electro-conductive biomaterials are a promising area in regenerative 
medicine, where biocompatibility depends on surface properties, electrical 
stimulation, and immune responses. Their degradation occurs through 
chemical, physical, and biological processes that must be carefully controlled 
to maintain functionality while ensuring safe resorption [34, 35]. Innovations 
like bio-erodible PEDOT derivatives show potential in creating electro-
conductive biomaterials that are both biocompatible and degradable, opening 
new possibilities for temporary implants such as cardiac tissue scaffolds and 
bioelectronics [9, 34].

 
Fig. 1. Some of different Types of Electro-conductive Materials [15]. 

Table 1. Properties of different Types of Electro-conductive Materials  

Type Description Properties Examples References 

Metallic Conductors Conduct electricity via free electrons moving through 
the metal lattice 

High electrical conductivity, good mechanical strength, 
widely used in wiring and electronics. 

Silver, Copper, Gold, Aluminum, 
Iron, Steel, Bronze [16, 17] 

Nonmetallic 
Conductors 

Materials that are not metals but can conduct 
electricity due to special structures or additives. 

Moderate conductivity; used in electrodes, flexible 
electronics, and composites. Graphite, conductive polymers [18-20] 

Electrolytic 
Conductors 

Conduct electricity through ion movement in a 
chemical reaction, often in liquid or gel form 

Electrical conduction by ion displacement, used in 
batteries and electrochemical cells Saltwater, acids, bases [21-23] 

Semiconductors Materials with conductivity between conductors and 
insulators; conductivity can be modified 

Used in electronic devices; conductivity controlled by 
doping and external conditions Silicon, Germanium [24, 25] 

Superconductors Materials that conduct electricity with zero resistance 
below a critical temperature 

Perfect conductivity at low temperatures; used in MRI 
machines, particle accelerators Niobium-tin, YBCO (ceramics) [26, 27] 
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3. Applications in Tissue Regeneration 

Electro-conductive biomaterials have emerged as a revolutionary class of 
materials in tissue regeneration because they can mimic the electrical 
properties of natural tissues and influence cell behaviors vital for healing. 
They are utilized across various tissue types, including cardiac, neural, bone, 
cartilage, muscle, and skin regeneration. 

3.1.  Neural Tissue Engineering 

Using electro-conductive biomaterials in neural tissue engineering 
represents a significant advancement in regenerative medicine, particularly for 
repairing damaged central and peripheral nervous system tissues.  

These materials establish a vital interface that replicates the natural 
electrical environment of neural tissues, enabling electrical stimulation (ES) 
to encourage neural stem/progenitor cell (NS/PC) differentiation into 
functional neuronal networks. Incorporating electrical cues into biomaterial 
scaffolds enhances the simulation of the physiological microenvironment of 
the central nervous system (CNS), which is essential for supporting neural 
differentiation, growth, and network formation [9].  

Conductive biomaterials, such as electro-conductive polymers (ECPs) and 
nano-biomaterials, provide distinct advantages like biocompatibility, 
biodegradability, and the ability to deliver external electrical stimuli that 
encourage nerve regeneration. In peripheral nerve repair, these materials are 
incorporated into nerve guidance conduits (NGCs), which offer structural 
support and alter the bioelectrical environment to accelerate nerve growth and 
improve functional recovery [36]. 

Electrical stimulation through conductive scaffolds has been shown to 
activate molecular pathways that support axonal regeneration and 
remyelination, leading to better motor and sensory outcomes [36, 37]. 

Recent progress includes developing 3D conductive hydrogel systems and 
printed conductive polymer microelectrode arrays, enabling 3D electrical 
stimulation of neural tissues derived from human neural stem cells. These 
platforms promote extensive neuron maturation and the formation of 
functional neural networks, showing promise for creating clinically relevant 
neural tissue constructs for research and therapy [9, 38]. Additionally, these 
biomaterials are useful for modeling neural development, disease, and drug 
screening [38]. 

3.2. Cardiac Tissue Repair 

Tissue engineering has appeared as a promising frontier in regenerative 
medicine, aiming to restore, maintain, or improve tissue functions [39]. 
Electroconductive biomaterials, including conductive nanomaterials such as 
gold nanoparticles, carbon-based nanomaterials such as carbon nanotubes, 
graphene oxide, silicon-derived nanomaterials, and electroconductive 
polymers like polyaniline and polypyrrole, have been integrated into cardiac 
patches and injectable hydrogels. These materials enable the transmission of 
electrical signals essential for synchronized cardiac muscle contraction, which 
is often impaired after MI due to tissue damage and fibrosis [34, 40]. By 
restoring electrical conductivity, these biomaterials enhance cell-to-cell 
communication among cardiomyocytes, promote tissue maturation, and 
improve contractile function [34].  

Two main strategies have emerged for using electro-conductive 
biomaterials in cardiac repair. The first strategy involves fabricating electro-
conductive patches or scaffolds in the lab, which are then implanted onto 
damaged heart tissue to provide mechanical support and electrical connection 
with the surrounding tissue. The second strategy employs injectable 
conductive hydrogels that can be directly delivered into the myocardium, 
offering a less invasive treatment option [40, 41]. These hydrogels not only 
help reestablish electrical coupling but also serve as delivery systems for 
therapeutic agents, genes, and growth factors to promote new blood vessel 
formation and tissue regeneration [40].   

Fig. 2 shows injectable conductive hydrogels used in cardiac tissue 
engineering to restore electrical function and deliver therapeutic agents. These 
biomaterials' unique electrical properties help minimize adverse remodeling, 

such as myocardial cell death and fibrosis, which lead to increased tissue 
stiffness and electrical resistance after an infarction.  

By improving the mechanical softness and electrical conductivity of 
damaged cardiac tissue, electro-conductive biomaterials support better 
electromechanical coupling and synchronized heartbeats, resulting in 
enhanced heart function [42, 43]. 

 
Fig. 2. Injectable conductive hydrogels for cardiac tissue engineering, facilitating 
electrical coupling and delivery of therapeutic agents. 

3.3. Bone and Musculoskeletal Regeneration 

Electro-conductive biomaterials have become very promising for bone and 
musculoskeletal regeneration because they mimic the natural 
electrophysiological environment of bone tissue. Since bone is an 
electroactive and electro-responsive tissue, regenerative efforts are 
significantly improved by implanting materials that conduct electrons, which 
facilitates electron transfer at the cell-material interface [44, 45]. This transfer 
enhances cell-substrate interactions, supports intercellular communication, 
and promotes osteogenesis of adult stem cells and osteoprogenitors even 
without external electrical stimulation [44].  

Yu et al.'s [46] recent research highlighted progress in nano-conductive 
hydrogels made from materials like calcium phosphate, PEDOT:PSS, 
magnesium titanate, and methacrylated alginate. These hydrogels 
demonstrated strong electro-activity, biocompatibility, and osteoinductivity, 
promoting calcium influx locally and activating signaling pathways such as 
TGF-β/Smad2, which are essential for bone formation. In vivo experiments 
showed that when combined with electrical stimulation, these hydrogels could 
fully repair bone defects within weeks, underscoring their potential for clinical 
use in electro-inspired bone regeneration. Additionally, electroactive 
biomaterials support osteogenesis while also promoting chondrogenesis, 
angiogenesis, antibacterial activity, and drug delivery, serving as 
multifunctional platforms for musculoskeletal tissue engineering [47, 48]. By 
integrating electrical, biochemical, and mechanical cues, these biomaterials 
offer a biomimetic approach to effectively restore bone and cartilage functions 
[49]. 

3.4. Wound Healing 

Conductive biomaterials play multiple roles in wound healing. They act as 
bioactive dressings that not only serve as physical barrthe wound healing 
processiers but also promote cell attachment, growth, and movement [50, 51]. 
For instance, PPy-based conductive films integrated into polymer matrices 
have been shown to support the viability and growth of human skin fibroblasts 
by Yu et al. [52], especially when combined with electrical stimulation. This 
method influences the expression of cytokines like IL-6 and IL-8, as well as 
growth factors such as FGF-1 and FGF-2, which are essential for forming 
granulation tissue and collagen production. Consequently, this approach 
enhances the healing process beyond what traditional dressings can achieve.  

Wang et al [53]. suggested that conductive biomaterials can be designed 
to incorporate functions like electronically controlled drug release, 
antibacterial effects through agents like silver nanowires, and photo-thermal 
properties. These features improve the healing environment. Such 
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multifunctional electro-conductive biomaterials are flexible and can be used 
for various wounds, including chronic and diabetic ulcers, which are typically 
difficult to treat. 

4. Challenges and Future Perspective 

Electro-conductive biomaterials offer significant potential for tissue 
engineering and regenerative medicine by delivering electrical stimuli directly 
to cells, thereby boosting functions such as growth, migration, adhesion, 
proliferation, and differentiation. These materials, like conducting polymers 
including polyaniline, PEDOT, and poly-pyrrole, combine the mechanical 
strengths of polymers with the electrical properties of metals, enabling 
adjustable conductivity and biocompatibility tailored to various tissues [7, 54]. 
However, challenges remain in their practical application, especially 
regarding their stability and biodegradability within the body. Conducting 
polymers tend to degrade slowly, which can cause inflammation and require 
surgical removal, prompting research into biodegradable alternatives. 
Additionally, successful integration of these materials into complex tissue 
environments demands precise control over surface properties and 
conductivity to support cell behavior and tissue regeneration. The 
development of electro-conductive hydrogels also faces hurdles such as 
mismatched mechanical properties with native tissues, environmental 
durability, susceptibility to damage, interface compatibility, and bacterial 
contamination all issues that must be addressed to unlock their full potential 
in bioelectronics and tissue engineering [54, 55].  

Looking ahead, the development of electro-conductive biomaterials 
depends on overcoming current challenges by adopting innovative fabrication 
techniques like 3D bio-printing [56]. This technology allows for the creation 
of precisely structured, cell-loaded constructs with adjustable electrical 
properties that better resemble native tissues. Research in material design 
focuses on balancing conductivity with mechanical flexibility, while also 
improving biodegradability and biocompatibility to avoid immune reactions 
[6, 57]. Combining electrical stimulation with conductive scaffolds has 
produced synergistic effects, especially in cardiac and neural tissue 
engineering, emphasizing the importance of integrating these methods. 
Additionally, bringing these materials into clinical practice will require 
solving issues such as long-term stability, monomer toxicity, and proper 
integration with host tissues. Ongoing interdisciplinary efforts are crucial for 
developing "smart" electro-conductive biomaterials that can adapt to 
physiological needs, support tissue growth, and effectively communicate with 
bio-electronic devices, creating new opportunities for treating various diseases 
and injuries [56, 57]. 

5. Conclusion 

Electro-conductive biomaterials have become an essential innovation in 
tissue engineering, bridging bioelectronics and regenerative medicine by 
mimicking the electrical properties of natural extracellular matrices. These 
materials support vital cellular activities such as growth, migration, 
proliferation, and differentiation across various tissues like cardiovascular, 
neural, bone, and muscle. Using conductive scaffolds with electrical 
stimulation offers combined benefits, enhancing functional recovery in nerve 
repair and the maturation of cardiac tissue.  

Although there have been promising results, challenges remain in 
understanding long-term biocompatibility, cell-material interactions, and 
scalable manufacturing processes. Future research should focus on developing 
intelligent scaffold designs that incorporate structural, mechanical, and 
dynamic electrical signals, along with thorough clinical translation efforts. 
The ongoing development of electroconductive biomaterials has the potential 
to significantly enhance the restoration of complex tissue functions. 
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