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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

This study examines how conductive polymers integrated into biomaterials can create electroactive 
wound dressings and systems for controlled drug delivery. These polymers, with electrical 
conductivity similar to human skin and possessing antioxidant and antibacterial qualities, promote 
better wound healing through electrical stimulation and targeted drug release. Different fabrication 
techniques lead to various structures like films, nanofibers, hydrogels, and foams, all of which 
support cell growth and tissue repair. Their electroactive properties enable electrically controlled 
therapeutic agent release, enhancing treatments for acute, chronic, infected, and diabetic wounds. 
Additionally, this technology allows for real-time wound monitoring and responsive therapy, tackling 
current wound care challenges. The review covers recent developments, mechanisms, and future 
outlooks for multifunctional conductive biomaterials used in skin tissue engineering and regenerative 
medicine. 
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1. Introduction  

Incorporating conductive polymers into biomaterials represents a 
significant breakthrough for next-generation medical devices, especially in 
wound healing and drug delivery [1, 2]. Unlike conventional polymers, 
conductive types such as polyaniline (PANI), polypyrrole (PPy), and 
poly(3,4-ethylenedioxythiophene) (PEDOT) can conduct electricity, allowing 
them to interact actively with biological tissues and transmit electrical signals 
to cells [3, 4]. This electrical functionality offers new opportunities for 
creating smart biomaterials that can participate in healing and respond to 
physiological signals [1, 5]. 

Electroactive wound dressings mark a major advancement in wound care 
[6, 7]. Utilizing the electrical properties of these polymers, they can activate 
cellular functions, speed up tissue healing, and enable real-time healing 
monitoring [8]. The capacity to produce or relay bioelectrical signals at the 
wound improves fibroblast movement, collagen formation, and new blood 
vessel growth, all essential for effective wound healing [8, 9]. 

Meanwhile, the use of conductive polymers in controlled drug release 
systems provides precise, on-demand delivery of therapeutic agents [10, 11]. 
These materials can be designed to release drugs in response to external 
electrical signals, enabling spatial and temporal control over dosage and 
reducing side effects [12, 13]. This level of control is especially beneficial in 
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treating chronic wounds and localized infections, where tailored therapy can 
greatly improve patient outcomes [12]. 

Although promising, challenges persist in enhancing the mechanical 
properties, biocompatibility, and durability of conductive polymer-based 
biomaterials [14, 15]. Current research aims to improve composite materials, 
modify polymer surfaces, and optimize fabrication processes to overcome 
these issues and fully realize the capabilities of electroactive platforms in 
medical applications [2]. 

This review investigates the current state of conductive polymers in 
biomaterials, emphasizing their use in electroactive wound dressings and 
controlled drug delivery. It underscores key material characteristics, 
biological interactions, and the challenges and future opportunities in this 
quickly advancing field. 

2. Conductive Polymers: An Overview 

Conductive polymers are a type of organic polymers that can conduct 
electricity, combining the mechanical traits of plastics with electrical 
conductivity usually linked to metals or semiconductors [16-18]. This special 
feature comes from their molecular structure, especially the presence of 
conjugated double bonds along their backbone, which enables the 
delocalization of π-electrons and helps facilitate charge transport [19] . 

2.1.  Types of Conductive Polymers 

Conductive polymers can be categorized according to their molecular 
structure, conduction mechanism, and applications. Fig. 1 and Table 1 
illustrated the primary types. 

2.2. Mechanisms of Electrical Conductivity 

Electrical conductivity in materials mainly results from the movement of 
charge carriers, such as electrons or ions, depending on the material [36]. In 
metals, free electrons near the Fermi level are responsible, as they can move 
easily through the crystal lattice. These electrons are loosely bound to atoms 
and can flow freely under an electric field, leading to high conductivity [37]. 
Band theory explains this by showing how electrons occupy energy bands; in 
metals, partially filled bands near the Fermi level provide numerous states for 
electrons to jump between, enabling conduction [38]. Conversely, insulators 
and semiconductors have filled bands separated by energy gaps, which restrict 
electron mobility and lower conductivity [39]. Electrical conductivity 
involves electron and ionic conduction, with ions in materials like rocks and 
electrolytes acting as charge carriers [40]. It depends on charge carriers' 
number, charge, and mobility. Factors such as lattice vibrations and impurities 
affect conductivity by scattering carriers [41]. At microscopic levels, quantum 
effects influence charge movement, especially in nanoscale materials, 
impacting high-tech devices [42, 43]. Overall, it  is determined by the 
material’s atomic structure, charge carrier presence and mobility, and external 
factors like temperature and impurities [36, 44]. 

2.3. Biocompatibility and Degradability 

Conductive polymers are increasingly seen as promising materials for 
biomedical uses because they uniquely combine electrical conductivity with 
potential biocompatibility [45, 46]. However, traditional intrinsically 
conducting polymers (ICPs) such as PEDOT, PPy, and PANI often have low 
or no biodegradability, limiting their application in temporary implants or 
tissue engineering scaffolds where material resorption is necessary [22, 47]. 
To overcome this, recent developments focus on designing polymers that are 
both biodegradable and biocompatible [48]. Methods include doping with 
biodopants or chemically modifying monomers to improve cellular 
compatibility, as well as creating block copolymers by linking electroactive 
oligomers with degradable ester bonds or copolymerizing conductive 
monomers with biodegradable polyesters such as poly(lactic acid) (PLA) or 
polycaprolactone (PCL). These strategies aim to refine the polymers' chemical 
and physical features to support cell growth while allowing controlled 

degradation in body environments [49]. Enhancing the degradability of 
conductive polymers, such as PEDOT with hydrolyzable side chains, allows 
for their gradual breakdown under physiological conditions [50]. These 
bioerodible polymers disintegrate into fragments suitable for renal clearance, 
reducing toxicity. Their erosion is pH-dependent and can be tailored for a 
specific lifetime, making them ideal for transient biomedical devices, such as 
implanted rechargeable batteries [2, 50]. Studies verify their cytocompatibility 
with various cell types, supporting safe biological integration. Overall, 
merging electrical functionality with biodegradability and biocompatibility 
promotes smart biomaterials for tissue engineering, biosensing, and implants 
[51]. 

3. Conductive Polymers for Electroactive Wound Dressings and Drug 
Delivery 

Conductive polymers have emerged as a groundbreaking class of materials 
in biomedical fields, particularly for electroactive wound dressings and 
controlled drug delivery systems. Their unique combination of electrical 
conductivity, biocompatibility, and tunable properties makes them ideal for 
developing advanced biomaterials that can respond to physiological signals 
and external stimuli [2, 52]. 

3.1.  Mechanisms of Action in Wound Healing 

Conductive polymers have electrical conductivity similar to human skin, 
enabling them to deliver electrical stimulation directly at the wound site [53, 
54]. Electrical stimulation has been demonstrated to promote wound healing 
by enhancing cellular activities such as fibroblast attachment, spreading, 
proliferation, migration, and angiogenesis [55]. For example, PPy-based 
composite films, especially when combined with electrical stimulation, can 
modulate cytokines like IL-6 and IL-8, along with growth factors such as 
FGF-1 and FGF-2, which are essential for tissue regeneration and 
myofibroblast transdifferentiation [56]. Additionally, conductive polymers 
can be engineered to release drugs in an electrically controlled manner, further 
increasing their therapeutic potential in wound care. Incorporating bioactive 
molecules and doping agents into CPs can improve biocompatibility, cellular 
adhesion, and growth, while their antioxidant properties help neutralize 
reactive oxygen species (ROS), protecting tissues from oxidative damage and 
infection during healing [57]. In addition to their electrical capabilities, 
conductive polymers aid wound healing by creating a supportive 
microenvironment that promotes cellular activities vital for tissue repair. They 
form a moist, three-dimensional matrix that encourages cell migration and 
growth, crucial for re-epithelialization and extracellular matrix reconstruction 
[58]. The surface hydrophilicity of the polymers can be adjusted to enhance 
cell attachment, and their antimicrobial properties help prevent infections, a 
major obstacle to healing. Research shows that conductive hydrogels made 
from CPs like PANI combined with biopolymers such as chitosan not only 
distribute electrical currents evenly but also function as drug delivery systems, 
releasing therapeutic compounds like vitamin D to speed up recovery [59, 60]. 
The combined benefits of electrical stimulation, antioxidant effects, 
antimicrobial activity, and controlled drug release position conductive 
polymers as a versatile, multifunctional platform for advanced wound 
dressings and skin tissue engineering [22, 61]. Fig. 2. shows schematic 
illustration of conductive polymers in wound healing and skin tissue 
engineering, illustrating their various structural forms (films, hydrogels, 
nanofibers, and scaffolds), and diverse applications including electroactive 
wound dressings and tissue scaffolds for enhanced healing and regeneration 
[56]. 

3.2. Integration of Conductive Polymers in Drug Release 

Integrating conductive polymers into drug delivery systems offers a 
promising method for achieving controlled and targeted drug release [10, 62, 
63]. Conductive polymers like polypyrrole, polyaniline, and polythiophene 
derivatives have distinctive electrical properties that allow them to respond to 
external stimuli, such as electrical fields [1, 64]. This ability can be utilized to 
finely control the release of therapeutic agents [65]. 
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Table 1. Summary Table of Common Conductive Polymers 

Polymer Type Examples Characteristics & Applications References 

Intrinsically Conductive Polyaniline, Polypyrrole, Polythiophene, PEDOT:PSS, 
Polyacetylene 

Conjugated polymers, doped for conductivity, used in sensors, electronics, energy 
devices [20-24] 

Composite Conductive Polymer + Carbon black, metals Conductivity via fillers, good mechanical stability 
[25-30] 

Ionically Conductive Polymer electrolytes Ion conduction, used in batteries, fuel cells 
[31, 32] 

Charge Transfer 
Polymers Doped poly(vinyl carbazole), triarylamine doped polymers Charge transfer mechanism, xerography applications 

[33, 34] 

 
Fig. 1. Structural illustration of some Intrinsically conducting polymers [35]. 

 
Fig. 2. Schematic depicting conductive polymers for wound healing and skin tissue engineering, showcasing various structural formats and practical applications [56]. 

In drug delivery, these polymers are typically designed as matrices or 
coatings that contain pharmaceutical agents. When an electrical stimulus is 
applied, the conductive polymer experiences redox reactions, resulting in 
modifications to its structure and porosity. These alterations help in releasing 
the encapsulated drug, enabling on-demand or pulsatile drug delivery [66]. 
This approach provides notable benefits over traditional systems by offering 
precise control over time and place, minimizing side effects, and enhancing 
treatment effectiveness [67]. Additionally, the biocompatibility and adjustable 
features of conductive polymers make them ideal for combining with different 
drugs and biomedical devices. Recent developments have concentrated on 
improving polymer synthesis, drug loading efficiency, and release kinetics to 
customize these systems for particular clinical applications [68]. The 
integration of electrical regulation with polymer chemistry marks a major 
progress in smart drug delivery, opening avenues for more personalized and 
adaptive therapies. 

4. Future Directions and Challenges 

The future directions and challenges of conductive polymers in 
electroactive wound dressings and controlled drug release focus on enhancing 
their multifunctional abilities while overcoming various technical and 
biological obstacles [68]. Despite the advantages of conductive polymers, 
precisely controlling drug release continues to be a significant challenge [69, 
70]. For instance, while single-layer polypyrrole polymers have shown 
controlled release with minimal burst and passive diffusion, bilayer systems 
still encounter issues like burst release and the unintended release of polymer 

residues. This shows the need for further material refinement and a deeper 
understanding of drug-polymer interactions to ensure safety and effectiveness. 

Another important approach involves combining conductive polymers 
with non-conductive materials to develop composite electroactive dressings 
that mimic the electrical properties of human skin, while also providing 
antibacterial and antioxidant benefits [56]. These composites can be produced 
as films, hydrogels, nanofibers, or foams to cater to different wound types and 
levels of severity [71, 72]. Applying electrical stimulation along with 
conductive polymers has shown to enhance cellular responses and gene 
activity related to wound healing, highlighting the promise of integrating 
material science with bioelectrical therapies [6]. Moreover, future research 
should prioritize creating intelligent wound dressings that can both deliver 
drugs in a controlled way and monitor healing progress directly within the 
body [73]. Achieving this will require advancements in biosensing 
technologies combined with conductive polymers to offer real-time feedback 
and allow for adaptive treatment [6].  

Additionally, efforts must be made to overcome challenges like ensuring 
long-term biocompatibility, preventing cytotoxic effects from polymer 
breakdown products, and scaling up manufacturing processes without 
compromising quality, all essential steps to move these innovations from lab 
studies to clinical use [52]. 

5. Conclusion 

In summary, the use of conductive polymers in biomaterials offers a highly 
promising avenue for creating electroactive wound dressings and systems for 
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controlled drug release. These materials provide electrical conductivity 
similar to human skin and possess excellent biocompatibility, antibacterial, 
and antioxidant properties, which together promote faster wound healing by 
stimulating electrically responsive cells and enabling targeted drug delivery. 
Advances in fabrication methods like electrospinning enable precise control 
over the physical characteristics and drug release behavior of these dressings, 
helping to minimize issues such as burst release and systemic side effects. 
Although challenges remain, such as optimizing drug release profiles and 
ensuring all components are biocompatible, ongoing research into single- and 
bilayer conductive polymer systems and composite materials continues to 
improve their therapeutic potential. Incorporating conductive polymers into 
smart bandages holds great promise for personalized, effective treatment of 
chronic and complex wounds, representing a significant advancement in tissue 
engineering and regenerative medicine. 
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