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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Biodegradable nanofiber scaffolds are an innovative platform that combine controlled drug delivery 
with enhanced tissue healing. Mimicking the extracellular matrix, they offer a porous, breathable, 
and moist environment that supports cell growth and migration. Their large surface area allows for 
efficient loading and sustained release of bioactive agents like growth factors and antimicrobials, 
promoting hemostasis, reducing inflammation, stimulating angiogenesis, and preventing infection. 
This dual action accelerates tissue regeneration, especially in complex wounds such as bone defects. 
Recent advances show that sequential, time-controlled release of multiple therapeutics from these 
scaffolds improves healing outcomes over single-agent treatments. Despite challenges in optimizing 
drug loading and release timing, biodegradable nanofiber scaffolds hold great promise for 
regenerative medicine and targeted drug delivery. This mini-review covers their fabrication, drug 
incorporation and release mechanism, biomedical applications, limitations, and future prospects for 
enhancing therapeutic performance. 
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1. Introduction 

Biodegradable nanofiber scaffolds represent a groundbreaking 
advancement in biomedical engineering, offering dual roles in drug delivery 
and enhancing tissue repair [1]. Their nanofibrous design closely resembles 
the natural extracellular matrix (ECM), forming a porous, breathable, and 
moisture-retentive environment that promotes cell adhesion, growth, and 
differentiation [2-4]. This structural mimicry supports tissue regeneration and 
also acts as an efficient carrier for therapeutic substances, making them ideal 

for intricate wound management and tissue engineering applications [5, 6]. 
Biodegradable polymers in nanofiber scaffolds aid tissue repair by degrading 
gradually, aligning with the healing process, which minimizes long-term 
inflammation and foreign body reactions [7, 8].  

Recent developments emphasize the multifunctional nature of these 
scaffolds, which act as both structural supports and drug storage systems [6, 
7]. For instance, cellulose-based electrospun nanofibers offer excellent 
biocompatibility and can be embedded with nanoparticles for antimicrobial 
purposes, thereby greatly enhancing wound healing [9-11]. Similarly, 
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nanofibers made from silk fibroin and collagen have been designed to release 
therapeutic agents uniformly, aiding tissue regeneration and combating 
infection and inflammation [8, 12]. Despite their potential, challenges remain 
in maximizing drug loading without compromising scaffold integrity and in 
attaining accurate control over drug release in both space and time [13]. 
Current research focuses on stimulus-responsive delivery systems integrated 
into nanofibers that respond to environmental cues such as pH or temperature, 
releasing drugs accordingly [14]. These developments seek to enhance the 
therapeutic effectiveness and adaptability of nanofiber scaffolds across 
different clinical applications, including chronic wound management and 
cancer therapy [13]. This mini review offers a detailed overview of 
biodegradable nanofiber scaffolds functioning as dual-action platforms. It 
emphasizes their design, fabrication techniques, and biomedical uses. The 
review examines how these scaffolds combine drug delivery with tissue 
regeneration, discusses recent technological progress, and highlights potential 
future developments to enhance scaffold performance for regenerative 
medicine and drug therapy. 

2. Materials of Biodegradable Nanofibers 

Biodegradable nanofibers are primarily composed of natural and synthetic 
biopolymers, including composite variants that decompose environmentally. 
They offer sustainable solutions for applications such as biomedical devices, 
filtration, and packaging [15]. Fig. 1 illustrates various types of materials used 
for biodegradable nanofibers. 

 
Fig. 1. Materials of Biodegradable Nanofibers. 

2.1.  Natural Biopolymers 

Commonly used natural biopolymers include cellulose, chitosan, starch, 
alginate, silk fibroin, and gelatin [16]. These materials originate from 
renewable sources and are prized for their biodegradability, biocompatibility, 
and sustainability [17, 18]. Cellulose, present in plant cell walls, is popular 
due to its abundance and strength [19, 20]. Chitosan, sourced from shellfish 
shells, is known for its antibacterial effects [21, 22]. Starch and alginate are 
also widely used because they are biodegradable and eco-friendly [23]. Silk 
fibroin and gelatin, derived from animals, are favored for their excellent 
biocompatibility and mechanical qualities [24]. 

2.2.  Synthetic Biopolymers 

Synthetic biodegradable polymers such as polylactic acid (PLA) and 
polycaprolactone (PCL) play crucial roles in creating biodegradable 
nanofibers [25]. PLA, produced from renewable resources like corn and 

sugarcane, is widely used in biomedical fields and filtration membranes 
because of its superb biodegradability and biocompatibility [26]. It can be 
fashioned into nanofibers with porous structures that improve filtration 
performance [27]. PCL is another synthetic polymer valued for its 
biodegradability and flexibility. 

2.3.  Composite Nanofibers 

Composite biodegradable nanofibers are sophisticated materials created 
by combining biodegradable polymers with nanoscale fillers or biofibers, 
often through electrospinning [28]. These nanofibers usually merge polymers 
like polyhydroxyalkanoate (PHA) or its derivatives with natural nanoscale 
fillers like treated fish-scale powder (TFSP), which contains hydroxyapatite 
similar to bone tissue, thus boosting mechanical strength and compatibility 
with biological systems [29].  

Adding these fillers enhances tensile strength and hydrophilicity, 
providing a conducive environment for cell growth, making them highly 
suitable for biomedical uses such as tissue engineering and filtration 
membranes. Furthermore, biofiber-reinforced nanocomposites are 
lightweight, stiff, biodegradable, and mechanically improved, broadening 
their applications across medical, environmental, and sustainability sectors 
[30]. The combination of natural nanofibers and biodegradable polymers 
enables customization of performance, including improved strength and 
controlled degradation, while being environmentally friendly [31]. Table 1 
presents the properties and uses of various types of biodegradable nanofibers. 

3. Dual-Functionality: Drug Delivery and Tissue Regeneration 

Biodegradable nanofiber scaffolds have become a revolutionary tool in 
regenerative medicine, providing dual functions by combining drug delivery 
with tissue regeneration [32, 33]. Their distinctive structure and material 
qualities allow for controlled release of therapeutic agents while creating a 
biomimetic environment that promotes cell adhesion, growth, and 
differentiation. 

3.1. Mechanisms of drug incorporation and release 

The efficiency of drug loading and the accuracy of release profiles in 
biodegradable nanofiber scaffolds depend on the interplay among drug 
incorporation methods, polymer properties, and scaffold architecture. This 
makes them versatile platforms for controlled drug delivery [6, 34, 35]. 

3.1.1. Drug Incorporation Mechanisms 

Drugs can be integrated into biodegradable nanofiber scaffolds through 
various methods like physical adsorption and chemical conjugation, each 
affecting loading efficiency and release behavior [6, 36]. A common technique 
is physical adsorption, where drugs attach to the scaffold surface via non-
covalent forces like van der Waals and electrostatic interactions [37, 38]. This 
method is simple and maintains the drug’s chemical integrity and activity, but 
it often leads to a faster release because the drug is on the surface and has 
limited loading capacity, which depends on the scaffold’s surface area and the 
drug’s solubility [6]. Blending is a common technique, involving mixing the 
drug with the polymer solution prior to fiber formation, typically through 
electrospinning [34]. This method disperses the drug evenly within the fiber 
matrix, leading to greater loading capacity and a more sustained release profile 
[39]. 

Table 1. Characteristics of Different Types of Biodegradable Nanofibers. 

Material Type Examples Source Properties/Applications References 
Natural 

Biopolymers 
Cellulose, Chitosan, Chitin, Collagen, Gelatin, Silk 

fibroin, Pectin, Alginate, Hyaluronic acid 
Derived from plants, 

shellfish, animals 
Biocompatible, biodegradable, bioactive, used in tissue 
engineering, wound healing, drug delivery, packaging [40, 41] 

Synthetic 
Biopolymers 

PLA, Poly lactic-co-glycolic acid (PLGA), 
Polyethylene oxide (PEO), PCL, Polybutyrolactam 

(PBY) 

Bioplastic or synthetic bio-
based 

Tunable biodegradability, mechanical stability, used in drug 
delivery, tissue engineering, flexible electronics [42] 

Composite 
Nanofibers 

Collagen-PCL, Gelatin-PCL, Chitosan-PEO, PLGA-
collagen, Cellulose-chitosan-PEO 

Combination of natural and 
synthetic polymers 

Improved spinnability, controlled degradation rate, enhanced 
mechanical properties [29, 43] 
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Additionally, core/shell and multilayer nanofiber structures can fine-tune 

drug incorporation [44]. In core/shell fibers, the drug resides in the core and 
is shielded by a polymer shell that acts as a diffusion barrier, allowing for 
extended and controlled drug release [34, 45]. 

Surface modification involves chemically or physically changing the 
nanofiber surface to enhance drug attachment or add functional groups that 
interact with the drug [46]. Also, the physical state of the drug, whether 
crystalline or amorphous, influences release behavior, as crystalline drugs on 
the fiber surface can lead to an initial burst release [46, 47].  

3.1.2. Drug Release Mechanisms 

Drug release mechanisms are varied and can include processes such as 
dissolution, diffusion, osmosis, partitioning, swelling, erosion, and targeting. 
These mechanisms depend on the specific application and may occur 
simultaneously or at different stages during the delivery process. The main 
process is diffusion, where drug molecules move from inside the fibers to the 
outside, driven by concentration differences [48].  

The release of drugs from biodegradable nanofiber scaffolds involves 
multiple mechanisms, often working together [34]. Polymer degradation is an 
essential process, particularly for biodegradable scaffolds [49, 50]. As the 
polymer matrix breaks down via hydrolysis or enzymatic action, the 
encapsulated drug is released gradually. 

The rate of degradation depends on factors such as the polymer's 
composition, molecular weight, and environmental conditions like pH and 
temperature [35, 51]. The hydrophobic nature of the polymer matrix can 
greatly slow water infiltration, which in turn delays drug diffusion and results 
in a more controlled, sustained release [34]. 

In certain cases, drug release occurs in multiple phases. It starts with a 
rapid burst of drug molecules on or near the fiber surface, then shifts to a 
slower, diffusion-driven stage as the drug moves from deeper inside the fibers. 
Finally, as the scaffold degrades, drugs embedded within the matrix are 
released when the polymer network breaks down [52]. 

The nanofiber scaffold's structure, including fiber diameter and porosity, 
affects the drug release profile [53, 54]. Thinner fibers or more porous 
scaffolds facilitate quicker drug diffusion, whereas thicker fibers and denser 
matrices tend to slow it down. Adding barrier layers or nanoparticles to the 
scaffold can further control the release rate, allowing for customized delivery 
suited to specific therapeutic requirements [55, 56]. 

Le et al. [34] examined Berberine-loaded PLA nanofiber scaffolds as a 
drug delivery system, linking their chemical properties to release behavior and 
antibacterial activity. The BBR/PLA scaffold’s release fit best with the 
Ritger–Peppas model, indicating Fickian diffusion, while BBR NPs/PLA 
aligned with both Higuchi and Ritger–Peppas models, showing a combined 
diffusion and degradation mechanism. In BBR/PLA, release involved water 
dissolving surface BBR and slow diffusion from the core. For BBR NPs/PLA, 
rapid surface dissolution was followed by gradual internal diffusion via pore 
formation. Overall, BBR release is mainly influenced by drug distribution, 
wettability, and nanofiber pore structure, with PLA degradation being a slow 
process. Fig. 2 shows in vitro release patterns of BBR from BBR/PLA (blue 
line) and BBR NPs/PLA (pink line) nanofiber scaffolds [34]. 

3.2. Tissue healing support: physical cues and bioactive loading 

Biodegradable nanofiber scaffolds facilitate tissue healing by offering 
physical cues that mimic the native ECM environment, alongside bioactive 
loading that delivers therapeutic agents or cells [57]. These combined 
approaches actively modulate the healing microenvironment, promoting cell 
survival, ECM remodeling, angiogenesis, and immunomodulation. As a 
result, they contribute to faster wound closure and better skin regeneration [58, 
59]. Physical cues encompass the scaffold's structural and mechanical 
characteristics that affect cell behavior and tissue growth. Electrospun 
nanofiber scaffolds composed of blends of natural and synthetic polymers 
such as PCL, gelatin, chitosan, collagen, and silk fibroin imitate the ECM 
architecture, creating a supportive microenvironment for cell attachment, 
growth, and differentiation. Their nanofibrous structure helps retain moisture 
and facilitate gas exchange, both essential for healing [8, 57].  

 
Fig. 2. a) In vitro release patterns of BBR from BBR/PLA (blue line) and BBR NPs/PLA 
(pink line) nanofiber scaffolds, b) photographic images depicting the BBR release 
outcomes at 12, 24, 48, and 56 hours, and c) suggested mechanism underlying BBR 
release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds [34]. 

Modifying scaffold stiffness, porosity, fiber orientation, and surface 
topology can enhance cell migration, promote blood vessel formation, and 
support ECM remodeling faster tissue regeneration [60]. For instance, 
scaffolds with optimized stiffness improve cell migration, while particular 
topological features can attract immune cells and trigger new angiogenesis 
[61]. Bioactive loading involves embedding therapeutic agents, such as 
growth factors, extracellular matrix proteins like fibrinogen and collagen I, 
nanoparticles, or stem cells, into scaffolds to actively influence the healing 
process. This method enables the sustained and local release of bioactive 
molecules that stimulate cellular responses, reduce inflammation, and support 
tissue regeneration [62]. For example, coaxial nanofiber scaffolds that mimic 
the dynamic ECM composition during wound healing by sequentially 
releasing fibrinogen and collagen I have been shown to boost 
immunomodulation and direct macrophage polarization toward a regenerative 
phenotype, thereby enhancing chronic wound healing [59]. Additionally, 
incorporating skin-derived precursor cells or mesenchymal stromal cells into 
scaffolds encourages ECM formation, cell proliferation, and integration at the 
wound site [58]. 

4. Current Limitations and Future Perspectives 

The current limitations of biodegradable nanofiber scaffolds as dual-
function platforms for drug delivery and tissue repair mainly involve 
difficulties in managing their degradation rate, drug loading, and release 
patterns. It is essential to align biodegradability with tissue regeneration; if the 
scaffold degrades too rapidly, it may not offer sufficient structural support, 
resulting in poor tissue formation and buildup of byproducts that could cause 
toxicity or inflammation. On the other hand, slow degradation might lead to 
scaffold encapsulation and immune rejection, hindering integration with 
surrounding tissue. Various factors such as material composition, scaffold 
architecture, surface modifications, and physiological conditions influence the 
degradation rate, complicating precise control [63]. 

A major challenge is ensuring controlled drug loading and precise 
spatiotemporal release without negatively affecting drug activity [6]. While 
nanofibers provide a high surface area and porous structure that mimics the 
extracellular matrix, facilitating efficient drug incorporation and sustained 
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release, keeping the drug stable during scaffold fabrication and release is still 
difficult [64]. Additionally, customizing release profiles to align with various 
tissue healing stages involves advanced stimulus-responsive systems, which 
are still being developed [6]. Future perspectives emphasize advancing 
fabrication methods like electrospinning, 3D printing, and molecular self-
assembly to create multifunctional scaffolds with improved mechanical 
strength, biodegradability, and drug delivery features [65]. Innovations 
involve designing composite nanofibers that integrate biocompatible 
polymers with bioactive molecules such as growth factors and anti-
inflammatory agents to enhance healing synergistically. Stimulus-responsive 
nanofiber scaffolds, which release drugs upon environmental triggers like pH 
or temperature changes, offer more precise treatment options. Moreover, 
gaining a deeper understanding of scaffold–tissue interactions and patient-
specific factors will support the development of personalized scaffolds that 
improve integration and effectiveness [5]. Addressing these challenges is 
essential to fully solve the potential of biodegradable nanofiber scaffolds as 
dual-function platforms for drug delivery and tissue regeneration [1]. 

5. Conclusion 

Biodegradable nanofiber scaffolds are a highly promising dual-action 
platform that combines targeted drug delivery with improved tissue healing. 
Their unique structure mimics the extracellular matrix, creating an optimal 
environment for cell attachment, growth, and differentiation. Additionally, 
their ability for controlled, localized drug release tackles key issues in 
treatment effectiveness and side effects. Advances in material science and 
nanotechnology have made it possible to create customizable scaffolds that 
safely degrade in the body, removing the need for surgical removal and 
lowering long-term complications. As research progresses to improve scaffold 
composition, drug loading methods, and release kinetics, these 

multifunctional systems are set to transform regenerative medicine and wound 
care, leading to better clinical outcomes and enhanced patient quality of life. 
Future investigations into in vivo performance, scalability, and regulatory 
processes will be vital for moving these innovative platforms from labs to 
widespread clinical use. 
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