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A B S T R A C T 

 

A R T I C L E    I N F O R M A T I O N 

Biodegradable nanofiber scaffolds are a newly emerging platform that provide the advantages of 

controlled drug delivery with improved tissue repair. They can replicate an extracellular matrix by 

introducing a porous, breathable and moist environment for the subsequent proper growth and 

migration of cells. The relatively large surface area provides an ideal medium for loading and 

sustained release of the bioactive agents (e.g., growth factors and antimicrobials), and can help 

promote hemostasis, reduce inflammation, stimulate angiogenesis and limit infection. Each of these 

processes contributes to the development of new tissues, however, in complex injuries (e.g. bone 

defects) this dual purpose can accelerate the rate of regeneration. Recently, researchers have reported 

that a temporally specific, sequential drug delivery by a biodegradable nanofiber scaffold could 

provide more effective healing opportunities compared to delivering one agent at a time. While we 

may still have challenges in getting or matching the drug loading with the temporal delivery, 

biodegradable nanofiber scaffolds will continue to be a promising and emerging platform for tissue 

regeneration and drug delivery. This mini-review discusses the different aspects related to 

biodegradable nanofiber scaffolds: designs and strategies for fabrication, methods of drug 

incorporation and drug release mechanisms, their biomedical applications, limitations and future 

pathways for enhancing therapeutic effects using biodegradable nanofiber scaffolds. 
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1. Introduction 

Biodegradable nanofiber scaffolds are a novel innovation in biomedical 

engineering, functioning as a vehicle for drug delivery and for stimulation of 

tissue repair [1]. The nanofiber modular design of the nanofiber scaffold 

accurately simulates the extracellular matrix (ECM), creating a porous, 

breathable, and moisture-retentive environment conducive to cell adhesion, 

growth, and appropriately programmed differentiation [2-4]. This structural 

simulation provides the scaffold with the ability to support tissue regeneration, 

and serve as an effective carrier for therapeutic agents; making these scaffolds 
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excellent candidates for multifaceted wound management, and tissue 

engineering applications [5, 6]. 

Biodegradable polymers incorporated in nanofiber scaffolds help repair 

tissues by degrading at a controlled rate that is consistent with the healing 

process, which leads to less chronic inflammation and foreign body response 

[7, 8]. New advances show the scaffold possess multi-functional properties as 

scaffolds and drug storage carriers [6, 7]. For example, cellulose-based 

electrospun nanofibers show favorable biocompatibility, may be incorporated 

with nanoparticles for antimicrobial activities, which will by far, improve 

wound healing [9-11]. Nanofibers composed of silk fibroin and collagen were 

shown to release therapeutic agents in a sustained manner while enhancing 

tissue regeneration by lessening the effects of infection and inflammation [8, 

12]. Even though scaffolds are promising, challenges still exist in balancing 

drug loading without damaging the integrity of the scaffold, and in precisely 

controlling the spatial and temporal drug release rate [13]. Current studies are 

focusing on stimulus-responsive delivery systems based on nanofibers that 

can respond to environmental cues (e.g. pH or temperature) to induce drug 

release [14]. These developments are intended to maximize the therapeutic 

utility and flexibility of nanofiber scaffolds in various clinical contexts, 

including, but not limited to, chronic wound care and oncologic therapy [13]. 

This mini review provides a comprehensive overview of biodegradable 

nanofiber scaffolds serving as dual-use platforms. It emphasizes their design, 

fabrication methods, and biomedical applications. The review considers how 

the scaffolds integrate drug delivery alongside tissue regeneration, discusses 

recent advances in the field, and considers potential future applications for 

improving scaffold performance for both regenerative medicine and drug 

delivery. 

2. Materials of Biodegradable Nanofibers 

Biodegradable nanofibers are made of natural and synthetic biopolymers 

(including composite versions) that environmentally degrade. They are 

alternative supplies that are sustainable for applications in biomedical devices, 

filtration, and packaging [15]. The different types of materials used to produce 

biodegradable nanofibers are shown in Fig. 1. 

 

Fig. 1. Materials of Biodegradable Nanofibers. 

2.1.  Natural Biopolymers 

Commonly used natural biopolymers involve: cellulose, chitosan, starch, 

alginate, silk fibroin, and gelatin[16]. These materials are sourced from 

renewable resources and have a lot of value for their biodegradability, 

biocompatibility, and sustainability [17, 18]. Cellulose, which forms the basis 

of the plant cell wall, is very popular because it is abundant and strong [19, 

20]. Chitosan, which is derived from shellfish shells, is known for its 

antibacterial effects [21, 22]. Starch, and alginate are both used frequently as 

they can biodegrade and are eco-friendly [23]. Silk fibroin and gelatin, which 

derive from animals, are attractive due to their excellent biocompatibility and 

mechanical properties [24]. 

2.2.  Synthetic Biopolymers 

Synthetic biodegradable polymers, including polylactic acid (PLA) and 

polycaprolactone (PCL), are essential to producing formidable biodegradable 

nanofibers [25]. PLA is produced from renewable resources like corn and 

sugarcane and is used in a variety of applications in the biomedical fields and 

also in filtration membranes due to its outstanding biodegradability and 

compatibility with human cells [26]. PLA can also be formed into nanofibers 

with porous nanofiber structures that enhance filtration performance [27]. 

PCL, a synthetic polymer, is another biodegradable polymer and is used due 

to its biodegradability and flexible characteristics. 

2.3.  Composite Nanofibers 

Composite biodegradable nanofibers are advanced materials formed by 

blending biodegradable polymers with nanoscale fillers or biofibers, typically 

using electrospinning [28]. These nanofibers typically contain polymers such 

as polyhydroxyalkanoate (PHA) or its derivatives, together with a natural 

nanoscale filler, such as treated fish-scale powder (TFSP), that contains 

hydroxyapatite similarly found in bone tissue, thereby improving the 

mechanical strength, bioactivity and compatibility with biological systems 

[29]. The use of fillers provides improved tensile strength and hydrophilicity, 

yielding a better environment for cell growth and therefore, are highly 

versatile for applications in biomedicine, including, tissue engineering and 

filtration membranes. Furthermore, biofiber-reinforced nanocomposites are 

lightweight, stiff, biodegradable, and mechanically improved, broadening 

their applications across medical, environmental, and sustainability sectors 

[30]. The combination of natural nanofibers and biodegradable polymers 

enables customization of performance, including improved strength and 

controlled degradation, while being environmentally friendly [31]. Table 1 

presents the properties and uses of various types of biodegradable nanofibers. 

3. Dual-Functionality: Drug Delivery and Tissue Regeneration 

Biodegradable nanofiber scaffolds have become a revolutionary tool in 

regenerative medicine, providing dual functions by combining drug delivery 

with tissue regeneration [36, 37]. Their distinctive structure and material 

qualities allow for controlled release of therapeutic agents while creating a 

biomimetic environment that promotes cell adhesion, growth, and 

differentiation. 

3.1. Mechanisms of drug incorporation and release 

The effectiveness of drug loading and the precision of release profiles in 

biodegradable nanofiber scaffolds are based on the combination of drug 

incorporation method, polymer properties and scaffold design. This makes 

them flexible platforms for controlled drug delivery [6, 38, 39]. 

3.1.1. Drug Incorporation Mechanisms 

Drugs can be incorporated into biodegradable nanofiber scaffolds using a 

number of different methods, including physical adsorption and chemical 

conjugation, and each method will impact loading efficiency and release 

behavior [6, 40]. A very useful method is physical adsorption; drugs are 

physically adsorbed to the scaffold because of non-covalent forces of 

attraction such as van der Waals interactions and electrostatic forces [41, 42]. 

Physical adsorption has advantageous because it is very easy, does not alter 

the physical or chemical integrity of the drug, or any function that its activity 

may possess, however, surface adsorption will usually release faster as these 

drugs are only on the surface of the scaffold and loading capacity is limited 

on the surface of the scaffold and the solubility of the drug is dependent on 

surface area [6]. Blending is a common technique, involving mixing the drug 

with the polymer solution prior to fiber formation, typically through 

electrospinning [38]. This method disperses the drug evenly within the fiber 

matrix, leading to greater loading capacity and a more sustained release profile 

[43]. Additionally, core/shell and multilayer nanofiber structures can fine-tune 

drug incorporation [44].  

In core/shell fibers, the drug resides in the core and is shielded by a 

polymer shell that acts as a diffusion barrier, allowing for extended and 

controlled drug release [38, 45].
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Table 1. Characteristics of Different Types of Biodegradable Nanofibers. 

Material Type Examples Source Properties/Applications References 

Natural 

Biopolymers 

Cellulose, Chitosan, Chitin, Collagen, Gelatin, Silk 

fibroin, Pectin, Alginate, Hyaluronic acid 

Derived from plants, 

shellfish, animals 

Biocompatible, biodegradable, bioactive, used in tissue 

engineering, wound healing, drug delivery, packaging [32, 33] 

Synthetic 

Biopolymers 

PLA, Poly lactic-co-glycolic acid (PLGA), 

Polyethylene oxide (PEO), PCL, Polybutyrolactam 

(PBY) 

Bioplastic or synthetic bio-

based 

Tunable biodegradability, mechanical stability, used in drug 

delivery, tissue engineering, flexible electronics [34] 

Composite 

Nanofibers 

Collagen-PCL, Gelatin-PCL, Chitosan-PEO, PLGA-

collagen, Cellulose-chitosan-PEO 

Combination of natural and 

synthetic polymers 

Improved spinnability, controlled degradation rate, enhanced 

mechanical properties [29, 35] 

Surface modification involves chemically or physically changing the 

nanofiber surface to enhance drug attachment or add functional groups that 

interact with the drug [46]. Also, the physical state of the drug, whether 

crystalline or amorphous, influences release behavior, as crystalline drugs on 

the fiber surface can lead to an initial burst release [46, 47].  

3.1.2. Drug Release Mechanisms 

Drug release mechanisms are varied and can include processes such as 

dissolution, diffusion, osmosis, partitioning, swelling, erosion, and targeting. 

These mechanisms depend on the specific application and may occur 

simultaneously or at different stages during the delivery process. The main 

process is diffusion, where drug molecules move from inside the fibers to the 

outside, driven by concentration differences [48].  

The release of drugs from biodegradable nanofiber scaffolds involves 

multiple mechanisms, often working together [38]. Polymer degradation is an 

essential process, particularly for biodegradable scaffolds [49, 50]. As the 

polymer matrix breaks down via hydrolysis or enzymatic action, the 

encapsulated drug is released gradually. The rate of degradation depends on 

factors such as the polymer's composition, molecular weight, and 

environmental conditions like pH and temperature [39, 51]. The hydrophobic 

nature of the polymer matrix can greatly slow water infiltration, which in turn 

delays drug diffusion and results in a more controlled, sustained release [38]. 

In certain cases, drug release occurs in multiple phases. It starts with a 

rapid burst of drug molecules on or near the fiber surface, then shifts to a 

slower, diffusion-driven stage as the drug moves from deeper inside the fibers. 

Finally, as the scaffold degrades, drugs embedded within the matrix are 

released when the polymer network breaks down [52]. 

The nanofiber scaffold's structure, including fiber diameter and porosity, 

affects the drug release profile [53, 54]. Thinner fibers or more porous 

scaffolds facilitate quicker drug diffusion, whereas thicker fibers and denser 

matrices tend to slow it down. Adding barrier layers or nanoparticles to the 

scaffold can further control the release rate, allowing for customized delivery 

suited to specific therapeutic requirements [55, 56].  

Le et al. [38] examined Berberine-loaded PLA nanofiber scaffolds as a 

drug delivery system, linking their chemical properties to release behavior and 

antibacterial activity. The BBR/PLA scaffold’s release fit best with the 

Ritger–Peppas model, indicating Fickian diffusion, while BBR NPs/PLA 

aligned with both Higuchi and Ritger–Peppas models, showing a combined 

diffusion and degradation mechanism. In BBR/PLA, release involved water 

dissolving surface BBR and slow diffusion from the core. For BBR NPs/PLA, 

rapid surface dissolution was followed by gradual internal diffusion via pore 

formation. Overall, BBR release is mainly influenced by drug distribution, 

wettability, and nanofiber pore structure, with PLA degradation being a slow 

process. Fig. 2 shows in vitro release patterns of BBR from BBR/PLA (blue 

line) and BBR NPs/PLA (pink line) nanofiber scaffolds [38]. 

3.2. Tissue healing support: physical cues and bioactive loading 

Biodegradable nanofiber scaffolds facilitate tissue healing by offering 

physical cues that mimic the native ECM environment, alongside bioactive 

loading that delivers therapeutic agents or cells [57]. These combined 

approaches actively modulate the healing microenvironment, promoting cell 

survival, ECM remodeling, angiogenesis, and immunomodulation. As a 

result, they contribute to faster wound closure and better skin regeneration [58, 

59]. Physical cues encompass the scaffold's structural and mechanical 

characteristics that affect cell behavior and tissue growth. Electrospun 

nanofiber scaffolds composed of blends of natural and synthetic polymers 

such as PCL, gelatin, chitosan, collagen, and silk fibroin imitate the ECM 

architecture, creating a supportive microenvironment for cell attachment, 

growth, and differentiation. Their nanofibrous structure helps retain moisture 

and facilitate gas exchange, both essential for healing [8, 57]. 

 
Fig. 2. a) In vitro release patterns of BBR from BBR/PLA (blue line) and BBR 

NPs/PLA (pink line) nanofiber scaffolds, b) photographic images depicting the BBR 

release outcomes at 12, 24, 48, and 56 hours, and c) suggested mechanism underlying 

BBR release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds [38]. 

Modifying scaffold stiffness, porosity, fiber orientation, and surface 

topology can enhance cell migration, promote blood vessel formation, and 

support ECM remodeling faster tissue regeneration [60]. In particular, 

scaffolds with modified stiffness enhance cell migration, whereas specific 

topological features may attract immune cells and result in new 

angiogenesis[61]. Bioactive loading is the active incorporation of therapeutic 

agents into scaffolds (i.e. growth factor, ECM proteins, such as fibrinogen and 

collagen I, nanoparticles, or stem cells) in order to facilitate a healing process. 

This technique takes into consideration prolonged, localized release of the 

bioactive molecule, which can elicit cell responses, decrease inflammation, 

and aid tissue regeneration [62]. For example, coaxial nanofiber scaffolds that 

sequentially release fibrinogen and collagen I, mimicking dynamic ECM 

composition during wound healing, have been used to promote 

immunomodulation and shift macrophage polarization to a regenerative 

macrophage phenotype, thereby promoting healing of chronic wounds [59]. 

Scaffolds with incorporated skin-derived precursor cells or mesenchymal 

stromal cells support formation of ECM, increased cell proliferation, and 

integration into the wound area [58]. 
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4. Current Limitations and Future Perspectives 

The existing constraints of biodegradable nanofiber scaffolds as dual-

purpose platforms for drug delivery and tissue repair. These limitations lie 

primarily in their degradation rate, drug loading capacity and release profiles. 

Managing biodegradability aligns with tissue regeneration; for example, a 

scaffold that degrades too quickly may not provide enough structural stability 

and time for adequate tissue formation due to accumulation of byproducts that 

may cause toxicity or inflammation.  

In contrast, a scaffold that degrades slowly may become encapsulated in 

scar tissue or experience immune rejection, preventing integration into 

surrounding tissue [63, 64]. The degradation rate is influenced by several 

factors including the composition of the material, but also the architecture of 

the scaffold, surface modifications, and the physiological environment, 

making it difficult to precisely control [63].  

There is an obvious challenge to controlling drug loading and 

spatiotemporal release such that the activity of the drug is not inhibited [6]. 

Although nanofibers provide an important high surface area and porous 

structure that resembles the extracellular matrix to allow efficient drug loading 

and sustained drug release, they still have the challenge to keep the drug stable 

during the fabricating of the scaffold and the releasing of the drug [65]. 

Furthermore, customizing for release profiles of various tissue healing stages 

is still required into advanced stimulus-responsive systems that are still 

developing [6]. 

Future directions call for the development of manufacturing technologies 

like electrospinning, 3D printing, and molecular self-assembly, to generate 

advanced scaffolds with multi-functionality and improved mechanical 

stability, biodegradability, and drug-delivery capabilities [66]. Advances 

would involve the design of composite nanofibers based on biocompatible 

polymers incorporating bioactive substances, including growth factors and 

anti-inflammatory molecules to facilitate integrated healing. Also, scaffold-

loaded and stimulus-response nanofiber scaffolds, to deliver drugs in response 

to stimulations including changes in pH or temperature, may offer more 

specific treatment opportunities. Also, a better understanding of the scaffold-

tissue interactions, and patient-specific variables, may lead to personalized 

scaffolds for better binding and efficacy [5]. Successful completion of these 

aims is necessary to achieve the full potential of biodegradable nanofiber 

scaffolds as dual-function platforms for drug delivery and tissue regeneration 

[1]. 

5. Conclusion 

Biodegradable nanofiber scaffolds are a promising dual-functionality 

technology that allows for targeted drug delivery and enhanced tissue repair. 

These scaffolds provide structural conditions that mirror the extracellular 

matrix to provide an ideal cell attachment, growth, and differentiation 

environment. Additionally, scaffolds that allow for localized controlled drug 

release will address the clinically significant challenges of effectiveness and 

side effects of treatment regimens. New advances in both material science and 

nanotechnology have begun to provide scaffolds that are customizable, 

biomimetic, biocompatible, and safely biodegradable in the body - eliminating 

the surgical intervention for material removal and reducing the risk of long-

term complications.  

As research advances to enhance scaffold composition, drug loading 

strategies, and the kinetics of drug release, these multifunctional scaffolds 

could be game changers in regenerative medicine and wound care, providing 

better clinical outcomes and promoting improved patient quality of life. Future 

research into regulatory pathways, in vivo performance, and large-scale 

production will be critical to translating these innovative scaffolds from 

research use to the clinic, where they can benefit patients across healthcare. 
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