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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

The rising incidence of drug-resistant wound infections poses a major problem for modern 
healthcare, demanding innovative and sustainable solutions in wound care. Plant-based biomaterials 
have become promising alternatives for creating advanced wound dressings because of their natural 
biocompatibility, biodegradability, and rich supply of bioactive compounds with antimicrobial, 
antioxidant, and anti-inflammatory effects. These natural materials, like cellulose, lignin, and various 
plant extracts, can be engineered into hydrogels, films, and nanofiber scaffolds that resemble the 
extracellular matrix and keep a moist environment that promotes tissue regeneration. Additionally, 
embedding controlled release systems into plant-based dressings allows for the continuous and 
localized delivery of therapeutic agents, specifically targeting drug-resistant bacteria while reducing 
systemic side effects. This strategy not only improves wound healing outcomes but also addresses 
the urgent demand for eco-friendly, multifunctional dressings capable of overcoming the limitations 
of traditional antibiotics. This review showcases recent progress in plant-based biomaterials as 
sustainable platforms for controlled release dressings, and applications in Wound Healing. 
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1. Introduction 

Plant-based biomaterials are increasingly seen as a promising, eco-friendly 
option for advanced wound dressings, especially for difficult-to-treat, drug-
resistant wounds [1, 2]. The rising incidence of chronic wounds complicated 
by antimicrobial resistance presents a significant clinical challenge, 
necessitating innovative solutions that effectively control infections while 
being biocompatible and environmentally sustainable [3-5]. Natural plant 
polymers provide key benefits like biodegradability, compatibility with the 
body, and the ability to deliver drugs in a controlled manner, making them 
well-suited for the development of next-generation wound care products [6]. 

The move to sustainable wound dressings supports broader environmental 
and healthcare goals, focusing on renewable resources and green chemistry in 
material production [7-9]. Plant-derived biomaterials like cellulose, alginate, 
and other polysaccharides are processed using eco-friendly methods, 

including enzymatic crosslinking and green solvents [10]. These approaches 
reduce environmental impacts while maintaining or improving therapeutic 
effectiveness. Embracing these sustainable practices not only decreases the 
carbon footprint of wound care products but also encourages cost-effective 
manufacturing suitable for large-scale production [7]. 

Besides their sustainability, plant-based biomaterials can be engineered to 
have multiple functions essential for wound healing [11]. These functions 
include maintaining wound moisture, facilitating gas exchange, absorbing 
fluids, and providing mechanical protection [12]. They can also be designed 
as controlled release systems that deliver antimicrobial agents, growth factors, 
or other bioactive substances directly to the wound, helping to combat drug 
resistance and biofilm development [13, 14]. These dressings enhance healing 
by providing localized, continuous drug delivery and minimizing systemic 
side effects [15]. Recent progress in biomaterial science has facilitated the 
integration of plant-based polymers with nanotechnology and bioactive 

  

Journal Homepage: www.geobioj.com 

 

http://www.geobioj.com/
mailto:Mahsa.BorzouyanDastjerdi@uon.edu.au
https://doi.org/...
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4241-0142
https://orcid.org/0000-0001-6420-6073
http://www.geobioj.com/
https://www.crossref.org/services/crossmark/
https://www.openaccess.nl/en
http://www.geobioj.com/
http://www.geobioj.com/


Borzouyan Dastjerdi et al./ Gorgian Biomaterials Journal 2 
molecules, boosting antimicrobial activity and aiding tissue regeneration [16, 
17]. For instance, composites that combine plant cellulose with natural 
antibacterial agents or nanoparticles show great promise in eliminating 
resistant bacterial strains and speeding up wound healing [3, 6]. These 
developments underscore the active interaction between natural biomaterials 
and advanced drug delivery systems, opening the path to smarter, more 
efficient wound dressings [18]. This review discusses the current state of 
plant-derived biomaterials as eco-friendly platforms for controlled release 
dressings. It covers their composition, fabrication techniques, antimicrobial 
approaches, and clinical significance in treating drug-resistant wounds. By 
reviewing recent advances and future prospects, the aim is to offer a thorough 
understanding of how plant-based materials can transform wound care with 
sustainable, biocompatible, and effective therapeutic options. 

2. Plant-Derived Biomaterials 

Plant-derived biomaterials are natural substances obtained from plants, 
including cellulose, lignin, pectin, alginate, and nanocellulose [19, 20]. They 
are increasingly valued for their biocompatibility, biodegradability, 
renewability, and environmentally friendly properties [21, 22]. These features 
make them well-suited for various uses in biomedical engineering, tissue 
regeneration, wound care, drug delivery, food technology, cosmetics, 
environmental health, and energy fields [23].  

The advantages of Plant-derived biomaterials are shown in Fig. 1. Also, 
Table 1 provide a concise overview of the main types, their biomedical 
relevance, and properties  of Plant-Derived Biomaterials. 

3. Mechanisms of Controlled Release 

Controlled release from plant-derived biomaterials typically relies on the 
physicochemical and structural properties of the biopolymer matrix, enabling 
the regulated and sustained delivery of encapsulated bioactive agents such as 

nutrients, drugs, or agrochemicals [41, 42]. One of the primary mechanisms 
involves diffusion-controlled release, where the encapsulated compound 
migrates through the biopolymer matrix as a result of a concentration gradient. 
The rate of this diffusion can be modified by manipulating the polymer’s 
composition, molecular arrangement, and internal porosity, allowing the 
release profile to be tailored from rapid to sustained over prolonged periods 
[8, 41]. Another common mechanism is matrix swelling, found in hydrogels 
and other plant-based polymer systems [8, 43]. When exposed to aqueous 
environments, these materials absorb water and swell, thereby enabling the 
contained agents to gradually escape as the hydrogel network loosens. This 
process is influenced by the hydrophilicity and crosslink density of the 
polymer network, both of which can be engineered to achieve the desired 
release kinetics [44]. 

Degradative release is also important, especially for applications that 
require release triggered by environmental or biological stimuli [45, 46]. 
Plant-derived biomaterials, such as lignin or modified cellulose, can be 
designed to undergo controlled degradation, either through hydrolysis or 
enzymatic action [47]. As the polymer structure erodes, it releases the 
encapsulated bioactive compound, with the release rate determined by the rate 
of matrix breakdown [46, 48]. 

Stimuli-responsive or smart release systems offer advanced control using 
external or environmental triggers [49, 50]. These systems respond to changes 
such as pH, temperature, or the presence of specific enzymes by altering the 
polymer’s properties to facilitate the release of the active ingredient. For 
example, incorporating enzyme-sensitive linkers or crosslinks into plant-
derived matrices allows for selective release in the presence of particular 
biological signals, which is particularly valuable for targeted drug delivery or 
precision agriculture [51]. The versatility in tuning these mechanisms, by 
varying the plant biopolymer type, structural modification, or environmental 
responsiveness, makes plant-derived biomaterials highly attractive for 
developing safe, effective, and sustainable controlled release systems for 
applications across biomedicine, agriculture, and food technology [52].

 
Fig. 1. Advantages of Plant-Derived Biomaterials 

Table 1. Types and Characteristics of Plant-Derived Biomaterials 

Type Description Source Characteristics References 

Nanocellulose Natural biopolymer with hierarchical fibrillar 
structure 

Wood, hemp, cotton, potato 
tuber, algae 

High mechanical strength, biocompatible, biodegradable, forms 
nanocrystals [24, 25] 

Alginate Polysaccharide from brown seaweed Marine algae (brown algae) Biocompatible, biodegradable, hydrogel-forming, low-cost, 
moderate cell adhesion [24, 26] 

Pectin Polysaccharides typical of plant cell walls Land plants Used as a gelling agent, biocompatible and biodegradable [27, 28] 
Starch Polysaccharide storage molecule Plants like potato, corn Polysaccharide, biodegradable, widely available [24, 29, 30] 

Agarose Polysaccharide from red algae Red algae Thermoreversible gel, biocompatible, structurally supportive [31] 

Fucoidan Sulfated polysaccharide from brown algae Brown algae Anti-inflammatory, anticoagulant properties; biomedical 
applications [32] 

Carrageenan Sulfated polysaccharide from red seaweed Red algae Gel-forming and bioactive [31, 33] 
Protein-based Polymers Plant-derived proteins Plants Biocompatible, biodegradable, useful in scaffolds [34] 

Extracellular Vesicles Nano-sized vesicles released by plant cells Plant cells Used in drug delivery, signaling [35] 

Mucilage Polysaccharide-rich gel-like substances from 
plants Plants (seeds, leaves) Biocompatible, biodegradable [36-38] 

Decellularized Scaffolds Plant tissues processed to remove cells but 
retain structure 

Whole plants (after cell 
removal) Natural structural framework, biocompatible [39] 

Whole Plant-Based 
Biomass 

Bulk plant material used for composite 
biomaterials Plants Renewable, eco-friendly scaffold materials [23, 40] 
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4. Applications in Wound Healing 

Applications of plant-derived biomaterials in wound healing have gained 
significant attention due to their natural properties, biocompatibility, 
biodegradability, and ability to mimic the extracellular matrix (ECM), which 
supports tissue regeneration and repair [53, 54]. These biomaterials are used 
to create wound dressings and formulations that enhance the healing process, 
especially by promoting cell adhesion, proliferation, moisture retention, and 
antimicrobial activity [55]. 

One example is a study by Buzzi et al [56] on the therapeutic use of 
Calendula officinalis extract in diabetic foot ulcers (DFUs), where clinical 
studies have shown that topical application of its hydroethanolic extract, 
combined with appropriate dressing, results in significant wound closure rates 
(up to 78% within 30 weeks), reduces exudate, and diminishes necrotic tissue 
without adverse effects. 

The current use of plant-derived dressings in wound care reflects 
significant advances leveraging natural compounds for enhanced healing 
properties [57-59]. Various biopolymeric formulations incorporating herbal 
bioactives such as Aloe vera (AV), plant extracts, and polysaccharides are 
being developed into modern wound dressings like hydrogels, films, creams, 
and nanofiber scaffolds [60]. These dressings not only provide traditional 
protection but actively promote wound healing through antimicrobial, 
antioxidant, and tissue-regenerating effects [61, 62]. 

Hydrogels containing natural polymers and plant extracts maintain a moist 
wound environment that accelerates epidermal regeneration, reduces 
infection, and stimulates autolytic debridement [63]. For example, AV-loaded 
hydrogels combined with polymers like sodium hyaluronate and chitosan have 
demonstrated efficacy in skin tissue regeneration within days [64].  

Film dressings infused with extracts from plants like Plantago lanceolata, 
Calendula officinalis, Lawsonia inermis, and Moringa oleifera have been 
optimized for properties such as antioxidant and anti-inflammatory activity, 
enhancing wound closure and tissue repair [65]. These polymer-based films 
show promising in vitro and in vivo results in accelerating healing processes 
[66]. 

Cutting-edge research also focuses on plant-based materials for 
transdermal delivery, exploiting biocompatible gums, mucilages, and 
secondary metabolites with versatile pharmacological benefits [4]. Secondary 
plant metabolites with antimicrobial and bioactive properties are integrated 
into dressings to improve therapeutic effects while leveraging the natural 
biodegradability and cost-effectiveness of plant-derived components [58].  

Innovations include soy protein isolate-based dressings, such as NeuEsse 
Inc.’s OmegaSkin™, which degrade into beneficial amino acids that support 
cellular repair at the wound site [67]. Such bioactive, biodegradable dressings 
are particularly valuable for chronic and burn wounds, reducing pain and 
infection risk through minimal dressing changes [68, 69].  

5. Future Perspectives and Challenges  

Advances in materials science have enabled the design of modern wound 
dressings incorporating natural polymers with intrinsic antimicrobial, anti-
inflammatory, and regenerative properties that align well with the complex 
biology of wound healing [70, 71]. These natural biomaterials, provide 
biocompatible matrices that facilitate cell adhesion, proliferation, moisture 
retention, and protection against infection, all critical for treating chronic and 
drug-resistant wounds [3]. An important future direction involves integrating 
these plant-derived materials with smart bioactive components, such as 
antimicrobial phytochemicals, growth factors, and regenerative agents, to 
enhance therapeutic efficacy while reducing dependence on conventional 
antibiotics amid rising antimicrobial resistance [58, 72].  

However, significant challenges remain before widespread clinical 
translation. Many bioactive dressings still lack rigorous clinical validation, 
with most studies conducted in vitro or in animal models [72]. There is also a 
need to better understand the mechanisms of action of these natural 
compounds and their interactions within complex wound microenvironments. 
Regulatory approval processes, production scalability, cost-effectiveness, and 
integration into patient care protocols must also be addressed [73]. 
Furthermore, the development of plant-derived dressings capable of real-time 

monitoring and responsive action to dynamic wound conditions such as smart 
dressings responsive to infection or inflammation biomarkers represents an 
emerging area with great potential but technical complexity [74]. 

6. Conclusion 

Plant-derived biomaterials provide a sustainable and promising platform 
for controlled release dressings aimed at drug-resistant wounds. Their inherent 
biocompatibility, biodegradability, and bioactivity, such as antimicrobial and 
anti-inflammatory properties, make them ideal candidates for advanced 
wound care applications. These natural polymers can facilitate targeted drug 
delivery, maintain a moist healing environment, and promote faster tissue 
regeneration while reducing side effects and resistance issues associated with 
synthetic materials. Additionally, innovations that incorporate plant-derived 
components with other biomaterials have shown improved mechanical 
strength and enhanced therapeutic effectiveness in wound healing models. 
Therefore, utilizing plant-derived biomaterials aligns with the growing 
demand for eco-friendly, effective, and controllable wound dressings, 
especially for managing difficult infections and drug-resistant wounds. 
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