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A B S T R A C T 

 

A R T I C L E    I N F O R M A T I O N 

The rising incidence of drug-resistant wound infections poses a major problem for modern 

healthcare, demanding innovative and sustainable solutions in wound care. Plant-based biomaterials 

have become promising alternatives for creating advanced wound dressings because of their natural 

biocompatibility, biodegradability, and rich supply of bioactive compounds with antimicrobial, 

antioxidant, and anti-inflammatory effects. These natural materials, like cellulose, lignin, and various 

plant extracts, can be engineered into hydrogels, films, and nanofiber scaffolds that resemble the 

extracellular matrix and keep a moist environment that promotes tissue regeneration. Additionally, 

embedding controlled release systems into plant-based dressings allows for the continuous and 

localized delivery of therapeutic agents, specifically targeting drug-resistant bacteria while reducing 

systemic side effects. This strategy not only improves wound healing outcomes but also addresses 

the urgent demand for eco-friendly, multifunctional dressings capable of overcoming the limitations 

of traditional antibiotics. This review showcases recent progress in plant-based biomaterials as 

sustainable platforms for controlled release dressings, and applications in Wound Healing. 
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1. Introduction 

Plant-derived biomaterials are increasingly being identified as a viable, 

environmentally sound alternative for advanced wound dressings, in 

particular, difficult-to-treat drug-resistant wounds [1, 2]. The increase in 

chronic wounds complicated by antimicrobial resistance presents a real 

challenge for health care providers. Therefore, it is necessary to find new 

approaches in addressing and resolving issues of infection control, which 

ensure that products are biocompatible, and environmentally friendly [3-5]. 

There are several advantages of using natural polymers derived from plants, 

including biodegradability, body compatibility and controlled drug delivery 

systems, which prolong their usefulness and make them excellent candidates 

for the development of next generation wound care products [6]. The switch 

to eco-friendly wound dressings is in line with goals for health and the 

environment, focusing on using renewable resources and green chemistry to 

make materials [7-9]. Plant-based biomaterials, such as cellulose, alginate, 

and other polysaccharides, are processed using methods that are good for the 

environment, like enzymatic crosslinking with an eco-friendly solvent  [10]. 

These eco-friendly methods have less of an effect on the environment while 

keeping or improving the effectiveness of the treatment.  Adopting sustainable 

practices will not only reduce the carbon footprint of wound care but will also 

promote a cost-saving manufacturing method that can be used in large-scale 

production [7]. Plant-based biomaterials can be made to have many functions 

that are important for healing wounds, in addition to being environmentally 

friendly [11]. These functions include keeping the wound moist, helping gases 

exchange, soaking up fluids, and protecting the wound mechanically [12]. 
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They can also be made to release their contents slowly. Systems that send 

antimicrobial agents, growth factors, or other bioactive substances straight to 

the wound, which helps fight drug resistance and the growth of biofilms[13, 

14]. These dressings help wounds heal faster by delivering drugs directly to 

the area and reducing side effects throughout the body [15]. Recent advances 

in biomaterial science have made it possible to combine plant-based polymers 

with nanotechnology and bioactive molecules. This has increased their ability 

to fight germs and help tissues heal [16, 17]. For example, composites that 

mix plant cellulose with natural antibacterial agents or nanoparticles have a 

lot of potential for getting rid of resistant bacterial strains and speeding up the 

healing of wounds [3, 6]. These changes show how natural biomaterials and 

advanced drug delivery systems can work together, which could lead to 

smarter, more effective wound dressings [18]. The current status of 

biomaterials derived from plants as environmentally friendly platforms for 

controlled release dressings is covered in this review.  Their composition, 

manufacturing methods, antimicrobial strategies, and clinical importance in 

the treatment of drug-resistant wounds are all covered.  Providing a 

comprehensive understanding of how plant-based materials can revolutionize 

wound care with sustainable, biocompatible, and efficacious therapeutic 

options is the goal of this review of recent developments and potential future 

directions. 

2. Plant-Derived Biomaterials 

Plant-derived biomaterials are natural substances obtained from plants, 

including cellulose, lignin, pectin, alginate, and nanocellulose [19, 20]. They 

are increasingly valued for their biocompatibility, biodegradability, 

renewability, and environmentally friendly properties [21, 22]. These features 

make them well-suited for various uses in biomedical engineering, tissue 

regeneration, wound care, drug delivery, food technology, cosmetics, 

environmental health, and energy fields [23]. The advantages of Plant-derived 

biomaterials are shown in Fig. 1. Also, Table 1 provide a concise overview of 

the main types, their biomedical relevance, and properties  of Plant-Derived 

Biomaterials. 

3. Mechanisms of Controlled Release 

Controlled release from plant-derived biomaterials typically relies on the 

physicochemical and structural properties of the biopolymer matrix, enabling 

the regulated and sustained delivery of encapsulated bioactive agents such as 

nutrients, drugs, or agrochemicals [41, 42]. One of the primary mechanisms 

involves diffusion-controlled release, where the encapsulated compound 

migrates through the biopolymer matrix as a result of a concentration gradient. 

The rate of this diffusion can be modified by manipulating the polymer’s 

composition, molecular arrangement, and internal porosity, allowing the 

release profile to be tailored from rapid to sustained over prolonged periods 

[8, 41].  

Another common mechanism is matrix swelling, found in hydrogels and 

other plant-based polymer systems [8, 43]. When exposed to aqueous 

environments, these materials absorb water and swell, thereby enabling the 

contained agents to gradually escape as the hydrogel network loosens. This 

process is influenced by the hydrophilicity and crosslink density of the 

polymer network, both of which can be engineered to achieve the desired 

release kinetics [44]. 

Degradative release is also important, especially for applications that 

require release triggered by environmental or biological stimuli [45, 46]. 

Plant-derived biomaterials, such as lignin or modified cellulose, can be 

designed to undergo controlled degradation, either through hydrolysis or 

enzymatic action [47]. As the polymer structure erodes, it releases the 

encapsulated bioactive compound, with the release rate determined by the rate 

of matrix breakdown [46, 48]. 

Stimuli-responsive or smart release systems provide advanced 

controllability by the use of external or environmental triggers [49, 50]. They 

also react by exposing or modifying the polymer (and hence the system) to an 

external stimulus such as a pH change, temperature change, or the presence of 

particular enzymes to enable a release of the active ingredient.

 
Fig. 1. Advantages of Plant-Derived Biomaterials 

Table 1. Types and Characteristics of Plant-Derived Biomaterials 

Type Description Source Characteristics References 

Nanocellulose 
Natural biopolymer with hierarchical fibrillar 

structure 

Wood, hemp, cotton, potato 

tuber, algae 

High mechanical strength, biocompatible, biodegradable, forms 

nanocrystals 
[24, 25] 

Alginate Polysaccharide from brown seaweed Marine algae (brown algae) 
Biocompatible, biodegradable, hydrogel-forming, low-cost, 

moderate cell adhesion 
[24, 26] 

Pectin Polysaccharides typical of plant cell walls Land plants Used as a gelling agent, biocompatible and biodegradable [27, 28] 

Starch Polysaccharide storage molecule Plants like potato, corn Polysaccharide, biodegradable, widely available [24, 29, 30] 

Agarose Polysaccharide from red algae Red algae Thermoreversible gel, biocompatible, structurally supportive [31] 

Fucoidan Sulfated polysaccharide from brown algae Brown algae 
Anti-inflammatory, anticoagulant properties; biomedical 

applications 
[32] 

Carrageenan Sulfated polysaccharide from red seaweed Red algae Gel-forming and bioactive [31, 33] 

Protein-based Polymers Plant-derived proteins Plants Biocompatible, biodegradable, useful in scaffolds [34] 

Extracellular Vesicles Nano-sized vesicles released by plant cells Plant cells Used in drug delivery, signaling [35] 

Mucilage 
Polysaccharide-rich gel-like substances from 

plants 
Plants (seeds, leaves) Biocompatible, biodegradable [36-38] 

Decellularized Scaffolds 
Plant tissues processed to remove cells but 

retain structure 

Whole plants (after cell 

removal) 
Natural structural framework, biocompatible [39] 
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Whole Plant-Based 

Biomass 

Bulk plant material used for composite 

biomaterials 
Plants Renewable, eco-friendly scaffold materials [23, 40] 

 

For example, a material with a matrix from plant sources could provide a 

selective release when some enzyme sensitive linker or crosslinks are 

incorporated, adding a biological signal as an external signal, which is 

valuable for applications in targeted drug delivery or precision agriculture 

[51]. The versatility in tuning these mechanisms, by varying the plant 

biopolymer type, structural modification, or environmental responsiveness, 

makes plant-derived biomaterials highly attractive for developing safe, 

effective, and sustainable controlled release systems for applications across 

biomedicine, agriculture, and food technology [52]. 

4. Applications in Wound Healing 

Applications of plant-derived biomaterials in wound healing have gained 

significant attention due to their natural properties, biocompatibility, 

biodegradability, and ability to mimic the extracellular matrix (ECM), which 

supports tissue regeneration and repair [53, 54]. These biomaterials are used 

to create wound dressings and formulations that enhance the healing process, 

especially by promoting cell adhesion, proliferation, moisture retention, and 

antimicrobial activity [55]. 

One example is a study by Buzzi et al [56] on the therapeutic use of 

Calendula officinalis extract in diabetic foot ulcers (DFUs), where clinical 

studies have shown that topical application of its hydroethanolic extract, 

combined with appropriate dressing, results in significant wound closure rates 

(up to 78% within 30 weeks), reduces exudate, and diminishes necrotic tissue 

without adverse effects. 

The current use of plant-derived dressings in wound care reflects 

significant advances leveraging natural compounds for enhanced healing 

properties [57-59]. Various biopolymeric formulations incorporating herbal 

bioactives such as Aloe vera (AV), plant extracts, and polysaccharides are 

being developed into modern wound dressings like hydrogels, films, creams, 

and nanofiber scaffolds [60]. These dressings not only provide traditional 

protection but actively promote wound healing through antimicrobial, 

antioxidant, and tissue-regenerating effects [61, 62]. 

Hydrogels containing natural polymers and plant extracts maintain a moist 

wound environment that accelerates epidermal regeneration, reduces 

infection, and stimulates autolytic debridement [63]. For example, AV-loaded 

hydrogels combined with polymers like sodium hyaluronate and chitosan have 

demonstrated efficacy in skin tissue regeneration within days [64].  

Film dressings infused with extracts from plants like Plantago lanceolata, 

Calendula officinalis, Lawsonia inermis, and Moringa oleifera have been 

optimized for properties such as antioxidant and anti-inflammatory activity, 

enhancing wound closure and tissue repair [65]. These polymer-based films 

show promising in vitro and in vivo results in accelerating healing processes 

[66].  

Cutting-edge research also focuses on plant-based materials for 

transdermal delivery, exploiting biocompatible gums, mucilages, and 

secondary metabolites with versatile pharmacological benefits [4]. Secondary 

plant metabolites with antimicrobial and bioactive properties are integrated 

into dressings to improve therapeutic effects while leveraging the natural 

biodegradability and cost-effectiveness of plant-derived components [58].  

Innovations include soy protein isolate-based dressings, such as NeuEsse 

Inc.’s OmegaSkin™, which degrade into beneficial amino acids that support 

cellular repair at the wound site [67]. Such bioactive, biodegradable dressings 

are particularly valuable for chronic and burn wounds, reducing pain and 

infection risk through minimal dressing changes [68, 69].  

5. Future Perspectives and Challenges  

Advances in materials science have enabled the design of modern wound 

dressings incorporating natural polymers with intrinsic antimicrobial, anti-

inflammatory, and regenerative properties that align well with the complex 

biology of wound healing [70, 71]. These natural biomaterials, provide 

biocompatible matrices that facilitate cell adhesion, proliferation, moisture 

retention, and protection against infection, all critical for treating chronic and 

drug-resistant wounds [3]. An important future direction involves integrating 

these plant-derived materials with smart bioactive components, such as 

antimicrobial phytochemicals, growth factors, and regenerative agents, to 

enhance therapeutic efficacy while reducing dependence on conventional 

antibiotics amid rising antimicrobial resistance [58, 72].  

However, significant challenges remain before widespread clinical 

translation. Many bioactive dressings still lack rigorous clinical validation, 

with most studies conducted in vitro or in animal models [72]. Additionally, 

understanding the mechanisms of action of these natural compounds, their 

interactions with complex wound microenvironments, regulatory pathways to 

approval, scalability of production, affordability or cost-benefit to the 

efficacy, and integration into patient care protocols have yet to be addressed 

[73]. Also important are the opportunities for plant-derived wound dressings 

to support real-time monitoring of the wound and take action in response to 

smart dressing functions and/or dynamic conditions in the wound like 

infection or inflammation biomarkers and treatment [74]. 

6. Conclusion 

Plant-based biomaterials represent a sustainably sourced and potentially 

powerful vehicle for controlled release dressings designed to treat drug-

resistant wounds. Due to their natural compatibility with biologic systems, 

biodegradability, and bioactivity, including properties such as anti-microbial 

and anti-inflammatory behavior, plant-based biomaterials are ideal candidates 

for cutting-edge wound management products. These natural polymer 

materials can offer delivery of drug compounds with targeted performances, 

retain a boundary moisture level for healing, and contribute to a more rapid 

rate of tissue regeneration, without the risks and development of side effects, 

or resistance of synthetic systems. Furthermore, entrepreneurial application of 

plant-derived biomaterials as an element to other sources of biomaterials has 

been shown to develop mechanical strength with better therapeutic 

applications in the wound healing models. The use of plant-based biomaterials 

is in line with the emerging demand for environmentally-friendly, effective, 

and controllable wound dressings, particularly for the treatment of challenging 

infections, which include drug-resistant wounds. 
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