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The rising incidence of drug-resistant wound infections poses a major problem for modern
healthcare, demanding innovative and sustainable solutions in wound care. Plant-based biomaterials
have become promising alternatives for creating advanced wound dressings because of their natural
biocompatibility, biodegradability, and rich supply of bioactive compounds with antimicrobial,
antioxidant, and anti-inflammatory effects. These natural materials, like cellulose, lignin, and various
plant extracts, can be engineered into hydrogels, films, and nanofiber scaffolds that resemble the
extracellular matrix and keep a moist environment that promotes tissue regeneration. Additionally,
embedding controlled release systems into plant-based dressings allows for the continuous and
localized delivery of therapeutic agents, specifically targeting drug-resistant bacteria while reducing
systemic side effects. This strategy not only improves wound healing outcomes but also addresses
the urgent demand for eco-friendly, multifunctional dressings capable of overcoming the limitations
of traditional antibiotics. This review showcases recent progress in plant-based biomaterials as
sustainable platforms for controlled release dressings, and applications in Wound Healing.
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1. Introduction

Plant-derived biomaterials are increasingly being identified as a viable,
environmentally sound alternative for advanced wound dressings, in
particular, difficult-to-treat drug-resistant wounds [1, 2]. The increase in
chronic wounds complicated by antimicrobial resistance presents a real
challenge for health care providers. Therefore, it is necessary to find new
approaches in addressing and resolving issues of infection control, which
ensure that products are biocompatible, and environmentally friendly [3-5].
There are several advantages of using natural polymers derived from plants,
including biodegradability, body compatibility and controlled drug delivery
systems, which prolong their usefulness and make them excellent candidates
for the development of next generation wound care products [6]. The switch

to eco-friendly wound dressings is in line with goals for health and the
environment, focusing on using renewable resources and green chemistry to
make materials [7-9]. Plant-based biomaterials, such as cellulose, alginate,
and other polysaccharides, are processed using methods that are good for the
environment, like enzymatic crosslinking with an eco-friendly solvent [10].
These eco-friendly methods have less of an effect on the environment while
keeping or improving the effectiveness of the treatment. Adopting sustainable
practices will not only reduce the carbon footprint of wound care but will also
promote a cost-saving manufacturing method that can be used in large-scale
production [7]. Plant-based biomaterials can be made to have many functions
that are important for healing wounds, in addition to being environmentally
friendly [11]. These functions include keeping the wound moist, helping gases
exchange, soaking up fluids, and protecting the wound mechanically [12].
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They can also be made to release their contents slowly. Systems that send
antimicrobial agents, growth factors, or other bioactive substances straight to
the wound, which helps fight drug resistance and the growth of biofilms[13,
14]. These dressings help wounds heal faster by delivering drugs directly to
the area and reducing side effects throughout the body [15]. Recent advances
in biomaterial science have made it possible to combine plant-based polymers
with nanotechnology and bioactive molecules. This has increased their ability
to fight germs and help tissues heal [16, 17]. For example, composites that
mix plant cellulose with natural antibacterial agents or nanoparticles have a
lot of potential for getting rid of resistant bacterial strains and speeding up the
healing of wounds [3, 6]. These changes show how natural biomaterials and
advanced drug delivery systems can work together, which could lead to
smarter, more effective wound dressings [18]. The current status of
biomaterials derived from plants as environmentally friendly platforms for
controlled release dressings is covered in this review. Their composition,
manufacturing methods, antimicrobial strategies, and clinical importance in
the treatment of drug-resistant wounds are all covered. Providing a
comprehensive understanding of how plant-based materials can revolutionize
wound care with sustainable, biocompatible, and efficacious therapeutic
options is the goal of this review of recent developments and potential future
directions.

2. Plant-Derived Biomaterials

Plant-derived biomaterials are natural substances obtained from plants,
including cellulose, lignin, pectin, alginate, and nanocellulose [19, 20]. They
are increasingly valued for their biocompatibility, biodegradability,
renewability, and environmentally friendly properties [21, 22]. These features
make them well-suited for various uses in biomedical engineering, tissue
regeneration, wound care, drug delivery, food technology, cosmetics,
environmental health, and energy fields [23]. The advantages of Plant-derived
biomaterials are shown in Fig. 1. Also, Table 1 provide a concise overview of
the main types, their biomedical relevance, and properties of Plant-Derived
Biomaterials.

Advantages of

3. Mechanisms of Controlled Release

Controlled release from plant-derived biomaterials typically relies on the
physicochemical and structural properties of the biopolymer matrix, enabling
the regulated and sustained delivery of encapsulated bioactive agents such as
nutrients, drugs, or agrochemicals [41, 42]. One of the primary mechanisms
involves diffusion-controlled release, where the encapsulated compound
migrates through the biopolymer matrix as a result of a concentration gradient.
The rate of this diffusion can be modified by manipulating the polymer’s
composition, molecular arrangement, and internal porosity, allowing the
release profile to be tailored from rapid to sustained over prolonged periods
[8,41].

Another common mechanism is matrix swelling, found in hydrogels and
other plant-based polymer systems [8, 43]. When exposed to aqueous
environments, these materials absorb water and swell, thereby enabling the
contained agents to gradually escape as the hydrogel network loosens. This
process is influenced by the hydrophilicity and crosslink density of the
polymer network, both of which can be engineered to achieve the desired
release kinetics [44].

Degradative release is also important, especially for applications that
require release triggered by environmental or biological stimuli [45, 46].
Plant-derived biomaterials, such as lignin or modified cellulose, can be
designed to undergo controlled degradation, either through hydrolysis or
enzymatic action [47]. As the polymer structure erodes, it releases the
encapsulated bioactive compound, with the release rate determined by the rate
of matrix breakdown [46, 48].

Stimuli-responsive or smart release systems provide advanced
controllability by the use of external or environmental triggers [49, 50]. They
also react by exposing or modifying the polymer (and hence the system) to an
external stimulus such as a pH change, temperature change, or the presence of
particular enzymes to enable a release of the active ingredient.

COSF Plant-Derived
Effective . .
Biomaterials
Bio- Enhance Cellular
compatible Activities

Fig. 1. Advantages of Plant-Derived Biomaterials

Table 1. Types and Characteristics of Plant-Derived Biomaterials

Type Description Source Characteristics References
Nanocellulose Natural biopolymer with hierarchical fibrillar ‘Wood, hemp, cotton, potato High mechanical strength, biocompatible, biodegradable, forms [24,25]
structure tuber, algae nanocrystals
Alginate Polysaccharide from brown seaweed Marine algae (brown algae) Biocompatible, biodegradable, hydrogg I-forming, low-cost, [24, 26]
moderate cell adhesion
Pectin Polysaccharides typical of plant cell walls Land plants Used as a gelling agent, biocompatible and biodegradable [27, 28]
Starch Polysaccharide storage molecule Plants like potato, corn Polysaccharide, biodegradable, widely available [24, 29, 30]
Agarose Polysaccharide from red algae Red algae Thermoreversible gel, biocompatible, structurally supportive [31]
Fucoidan Sulfated polysaccharide from brown algae Brown algae Anti-inflammatory, antlcoggul_a nt properties; biomedical [32]
applications
Carrageenan Sulfated polysaccharide from red seaweed Red algae Gel-forming and bioactive [31, 33]
Protein-based Polymers Plant-derived proteins Plants Biocompatible, biodegradable, useful in scaffolds [34]
Extracellular Vesicles Nano-sized vesicles released by plant cells Plant cells Used in drug delivery, signaling [35]
Mucilage Polysaccharlde—rlchp%:rll—tlslke substances from Plants (seeds, leaves) Biocompatible, biodegradable [36-38]
Decellularized Scaffolds Plant tissues processed to remove cells but Whole plants (after cell Natural structural framework, biocompatible [39]

retain structure removal)
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Whole Plant-Based Bulk plant material used for composite
Biomass biomaterials

Plants

Renewable, eco-friendly scaffold materials [23, 40]

For example, a material with a matrix from plant sources could provide a
selective release when some enzyme sensitive linker or crosslinks are
incorporated, adding a biological signal as an external signal, which is
valuable for applications in targeted drug delivery or precision agriculture
[51]. The versatility in tuning these mechanisms, by varying the plant
biopolymer type, structural modification, or environmental responsiveness,
makes plant-derived biomaterials highly attractive for developing safe,
effective, and sustainable controlled release systems for applications across
biomedicine, agriculture, and food technology [52].

4. Applications in Wound Healing

Applications of plant-derived biomaterials in wound healing have gained
significant attention due to their natural properties, biocompatibility,
biodegradability, and ability to mimic the extracellular matrix (ECM), which
supports tissue regeneration and repair [53, 54]. These biomaterials are used
to create wound dressings and formulations that enhance the healing process,
especially by promoting cell adhesion, proliferation, moisture retention, and
antimicrobial activity [55].

One example is a study by Buzzi et al [56] on the therapeutic use of
Calendula officinalis extract in diabetic foot ulcers (DFUs), where clinical
studies have shown that topical application of its hydroethanolic extract,
combined with appropriate dressing, results in significant wound closure rates
(up to 78% within 30 weeks), reduces exudate, and diminishes necrotic tissue
without adverse effects.

The current use of plant-derived dressings in wound care reflects
significant advances leveraging natural compounds for enhanced healing
properties [57-59]. Various biopolymeric formulations incorporating herbal
bioactives such as Aloe vera (AV), plant extracts, and polysaccharides are
being developed into modern wound dressings like hydrogels, films, creams,
and nanofiber scaffolds [60]. These dressings not only provide traditional
protection but actively promote wound healing through antimicrobial,
antioxidant, and tissue-regenerating effects [61, 62].

Hydrogels containing natural polymers and plant extracts maintain a moist
wound environment that accelerates epidermal regeneration, reduces
infection, and stimulates autolytic debridement [63]. For example, AV-loaded
hydrogels combined with polymers like sodium hyaluronate and chitosan have
demonstrated efficacy in skin tissue regeneration within days [64].

Film dressings infused with extracts from plants like Plantago lanceolata,
Calendula officinalis, Lawsonia inermis, and Moringa oleifera have been
optimized for properties such as antioxidant and anti-inflammatory activity,
enhancing wound closure and tissue repair [65]. These polymer-based films
show promising in vitro and in vivo results in accelerating healing processes
[66].

Cutting-edge research also focuses on plant-based materials for
transdermal delivery, exploiting biocompatible gums, mucilages, and
secondary metabolites with versatile pharmacological benefits [4]. Secondary
plant metabolites with antimicrobial and bioactive properties are integrated
into dressings to improve therapeutic effects while leveraging the natural
biodegradability and cost-effectiveness of plant-derived components [58].

Innovations include soy protein isolate-based dressings, such as NeuEsse
Inc.’s OmegaSkin™, which degrade into beneficial amino acids that support
cellular repair at the wound site [67]. Such bioactive, biodegradable dressings
are particularly valuable for chronic and burn wounds, reducing pain and
infection risk through minimal dressing changes [68, 69].

5. Future Perspectives and Challenges

Advances in materials science have enabled the design of modern wound
dressings incorporating natural polymers with intrinsic antimicrobial, anti-
inflammatory, and regenerative properties that align well with the complex
biology of wound healing [70, 71]. These natural biomaterials, provide
biocompatible matrices that facilitate cell adhesion, proliferation, moisture
retention, and protection against infection, all critical for treating chronic and
drug-resistant wounds [3]. An important future direction involves integrating

these plant-derived materials with smart bioactive components, such as
antimicrobial phytochemicals, growth factors, and regenerative agents, to
enhance therapeutic efficacy while reducing dependence on conventional
antibiotics amid rising antimicrobial resistance [58, 72].

However, significant challenges remain before widespread clinical
translation. Many bioactive dressings still lack rigorous clinical validation,
with most studies conducted in vitro or in animal models [72]. Additionally,
understanding the mechanisms of action of these natural compounds, their
interactions with complex wound microenvironments, regulatory pathways to
approval, scalability of production, affordability or cost-benefit to the
efficacy, and integration into patient care protocols have yet to be addressed
[73]. Also important are the opportunities for plant-derived wound dressings
to support real-time monitoring of the wound and take action in response to
smart dressing functions and/or dynamic conditions in the wound like
infection or inflammation biomarkers and treatment [74].

6. Conclusion

Plant-based biomaterials represent a sustainably sourced and potentially
powerful vehicle for controlled release dressings designed to treat drug-
resistant wounds. Due to their natural compatibility with biologic systems,
biodegradability, and bioactivity, including properties such as anti-microbial
and anti-inflammatory behavior, plant-based biomaterials are ideal candidates
for cutting-edge wound management products. These natural polymer
materials can offer delivery of drug compounds with targeted performances,
retain a boundary moisture level for healing, and contribute to a more rapid
rate of tissue regeneration, without the risks and development of side effects,
or resistance of synthetic systems. Furthermore, entrepreneurial application of
plant-derived biomaterials as an element to other sources of biomaterials has
been shown to develop mechanical strength with better therapeutic
applications in the wound healing models. The use of plant-based biomaterials
is in line with the emerging demand for environmentally-friendly, effective,
and controllable wound dressings, particularly for the treatment of challenging
infections, which include drug-resistant wounds.
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